-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathoptimization.py
81 lines (70 loc) · 3.02 KB
/
optimization.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
import torch
def optimize(optimizer_type, parameters, optimization_closure,
plot_closure,
learning_rate,
num_iter,
optimization_closure_args,
plot_closure_args):
"""
Runs optimization loop.
:param optimizer_type: 'LBFGS' of 'adam'
:param parameters: list of Tensors to optimize over
:param optimization_closure: function, that returns loss variable
:param plot_closure: function that plots the loss and other information
:param learning_rate: learning rate
:param num_iter: number of iterations
:param dict optimization_closure_args: the arguments for the optimization closure
:param dict plot_closure_args: the arguments for the plot closure
:return:
"""
if optimizer_type == 'LBFGS':
assert False
elif optimizer_type == 'adam':
print('Starting optimization with ADAM')
optimizer = torch.optim.Adam(parameters, lr=learning_rate)
for j in range(num_iter):
optimizer.zero_grad()
optimization_results = optimization_closure(j, **optimization_closure_args)
if plot_closure:
plot_closure(j, *optimization_results, **plot_closure_args)
optimizer.step()
else:
assert False
def uneven_optimize(optimizer_type, parameters, optimization_closure,
plot_closure,
learning_rate,
num_iter, step,
optimization_closure_args,
plot_closure_args):
"""
Runs optimization loop.
:param optimizer_type: 'LBFGS' of 'adam'
:param parameters: list of Tensors to optimize over
:param optimization_closure: function, that returns loss variable
:param plot_closure: function that plots the loss and other information
:param learning_rate: learning rate
:param num_iter: number of iterations
:param dict optimization_closure_args: the arguments for the optimization closure
:param dict plot_closure_args: the arguments for the plot closure
:return:
"""
if optimizer_type == 'LBFGS':
assert False
elif optimizer_type == 'adam':
print('Starting optimization with ADAM')
next_step_optimization_args = None
for j in range(num_iter // step):
optimizer = torch.optim.Adam(parameters, lr=learning_rate)
for i in range(step):
optimizer.zero_grad()
optimization_results, next_step_optimization_args_temp = \
optimization_closure(j*step + i, next_step_optimization_args, **optimization_closure_args)
if plot_closure:
plot_closure(j*step + i, *optimization_results, **plot_closure_args)
optimizer.step()
if next_step_optimization_args is None:
# step zero
next_step_optimization_args = next_step_optimization_args_temp
next_step_optimization_args = next_step_optimization_args_temp
else:
assert False