-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathtrainer.py
executable file
·421 lines (357 loc) · 17.2 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
import argparse, os, glob
import torch, pdb
import numpy as np
from skimage.metrics import peak_signal_noise_ratio as psnr
from skimage.metrics import structural_similarity as ssim
from PIL import Image
import math, random, time
import torch.backends.cudnn as cudnn
import torch.nn as nn
from torch.autograd import Variable
from torch.utils.data import DataLoader
from model_res import *
from util.universal_dataset import TrainDataset
from torchvision.utils import save_image
from utils import unfreeze, freeze
from scipy import io as scio
import torch.nn.functional as F
import random
import cv2
# Training settings
parser = argparse.ArgumentParser(description="PyTorch SRResNet")
parser.add_argument("--batchSize", type=int, default=4, help="training batch size")
parser.add_argument("--nEpochs", type=int, default=200, help="number of epochs to train for")
parser.add_argument("--lr", type=float, default=1e-4, help="Learning Rate. Default=1e-4")
parser.add_argument("--step", type=int, default=20,
help="Sets the learning rate to the initial LR decayed by momentum every n epochs, Default: n=500")
parser.add_argument("--cuda", default=True, help="Use cuda?")
parser.add_argument("--resume", default=None, type=str,
help="Path to resume model (default: none")
parser.add_argument("--start-epoch", default=1, type=int, help="Manual epoch number (useful on restarts)")
parser.add_argument("--threads", type=int, default=16, help="Number of threads for data loader to use, (default: 1)")
parser.add_argument("--pretrained", default="", type=str, help="Path to pretrained model (default: none)")
parser.add_argument("--gpus", default="0", type=str, help="gpu ids (default: 0)")
parser.add_argument("--pairnum", default=10000000, type=int, help="num of paired samples")
parser.add_argument('--de_type', nargs='+', default=['denoise_15', 'denoise_25', 'denoise_50', 'derain', 'dehaze'],
help='which type of degradations is training and testing for.')
parser.add_argument('--denoise_dir', type=str, default='data/Train/Denoise/',
help='where clean images of denoising saves.')
parser.add_argument('--derain_dir', type=str, default='data/Train/Derain/',
help='where training images of deraining saves.')
parser.add_argument('--dehaze_dir', type=str, default='data/Train/Dehaze/',
help='where training images of dehazing saves.')
parser.add_argument('--deblur_dir', type=str, default='data/Train/Deblur/',
help='where training images of dehazing saves.')
parser.add_argument('--lowlight_dir', type=str, default='data/Train/lowlight/',
help='where training images of deraining saves.')
# parser.add_argument("--degset", default="./datasets/Deraining/train/Rain13K/input/", type=str, help="degraded data")
# parser.add_argument("--tarset", default="./datasets/Deraining/train/Rain13K/target/", type=str, help="target data")
parser.add_argument("--degset", default="./data/test/derain/Rain100L/input/", type=str, help="degraded data")
parser.add_argument("--tarset", default="./data/test/derain/Rain100L/target/", type=str, help="target data")
parser.add_argument("--Sigma", default=10000, type=float)
parser.add_argument("--sigma", default=1, type=float)
parser.add_argument("--optimizer", default="RMSprop", type=str, help="optimizer type")
parser.add_argument("--backbone", default="RCNet", type=str, help="architecture name")
parser.add_argument("--type", default="Deraining", type=str, help="to distinguish the ckpt name ")
parser.add_argument('--patch_size', type=int, default=128, help='patchsize of input.')
# path
parser.add_argument('--data_file_dir', type=str, default='data_dir/', help='where clean images of denoising saves.')
def get_parameter_number(net):
total_num = sum(p.numel() for p in net.parameters())
trainable_num = sum(p.numel() for p in net.parameters() if p.requires_grad)
return total_num, trainable_num
def main():
global opt, Tnet
opt = parser.parse_args()
print(opt)
cuda = opt.cuda
if cuda:
print("=> use gpu id: '{}'".format(opt.gpus))
os.environ["CUDA_VISIBLE_DEVICES"] = opt.gpus
if not torch.cuda.is_available():
raise Exception("No GPU found or Wrong gpu id, please run without --cuda")
opt.seed = random.randint(1, 10000)
print("Random Seed: ", opt.seed)
torch.manual_seed(opt.seed)
if cuda:
torch.cuda.manual_seed(opt.seed)
patch_size = opt.patch_size
batch_size = opt.batchSize
cudnn.benchmark = True
#
# deg_path = opt.degset
# tar_path = opt.tarset
# data_list = [deg_path, tar_path]
print("------Datasets loaded------")
if opt.backbone == 'RCNet':
Tnet = RCNet(decoder=True)
elif opt.backbone == 'MRCNet':
Tnet = MRCNet(decoder=True)
else:
Tnet = PromptIR(decoder=True)
print("*****Using " + opt.backbone + " as the backbone architecture******")
Fnet = F_net(patch_size)
# Pnet = PGenerator(batch_size)
print("------Network constructed------")
if cuda:
Tnet = Tnet.cuda()
Fnet = Fnet.cuda()
if opt.resume:
if os.path.isfile(opt.resume):
print("=> loading checkpoint '{}'".format(opt.resume))
checkpoint = torch.load(opt.resume)
opt.start_epoch = checkpoint["epoch"] + 1
Tnet.load_state_dict(checkpoint["Tnet"].state_dict())
Fnet.load_state_dict(checkpoint["Fnet"].state_dict())
else:
print("=> no checkpoint found at '{}'".format(opt.resume))
# optionally copy weights from a checkpoint
if opt.pretrained:
if os.path.isfile(opt.pretrained):
print("=> loading model '{}'".format(opt.pretrained))
weights = torch.load(opt.pretrained)
Tnet.load_state_dict(weights['model'].state_dict())
Fnet.load_state_dict(weights['discr'].state_dict())
else:
print("=> no model found at '{}'".format(opt.pretrained))
print("------Using Optimizer: '{}' ------".format(opt.optimizer))
if opt.optimizer == 'Adam':
T_optimizer = torch.optim.Adam(Tnet.parameters(), lr=opt.lr / 2)
F_optimizer = torch.optim.Adam(Fnet.parameters(), lr=opt.lr)
elif opt.optimizer == 'RMSprop':
T_optimizer = torch.optim.RMSprop(Tnet.parameters(), lr=opt.lr / 2)
F_optimizer = torch.optim.RMSprop(Fnet.parameters(), lr=opt.lr)
print("------Training------")
MSE = []
TLOSS = []
PLOSS = []
train_set = TrainDataset(opt)
# train_set = DegTarDataset(deg_path, tar_path, pairnum=opt.pairnum)
training_data_loader = DataLoader(dataset=train_set, num_workers=opt.threads, \
batch_size=opt.batchSize, shuffle=True)
num = 0
deg_list = glob.glob(opt.degset + "*")
deg_list = sorted(deg_list)
tar_list = sorted(glob.glob(opt.tarset + "*"))
for epoch in range(opt.start_epoch, opt.nEpochs + 1):
mse = 0
Tloss = 0
Ploss = 0
a, b, c = train(training_data_loader, T_optimizer, F_optimizer, Tnet, Fnet, epoch)
p = evaluate(Tnet, deg_list, tar_list)
with open("./checksample/all/validation_results.txt", "a") as f:
f.write(
f"Net {opt.backbone} Patchsize {patch_size} Epoch {epoch}, psnr {p:.4f}, Batchsize {opt.batchSize}\n")
mse += a
Tloss += b
Ploss += c
num += 1
mse = mse / num
Tloss = Tloss / num
Ploss = Ploss / num
MSE.append(format(mse))
TLOSS.append(format(Tloss))
PLOSS.append(format(Ploss))
scio.savemat('TLOSSrain.mat', {'TLOSS': TLOSS})
scio.savemat('PLOSSrain.mat', {'PLOSS': PLOSS})
save_checkpoint(Tnet, Fnet, epoch)
#
# 'w')
# for mse in MSE:
# file.write(mse + '\n')
# file.close()
# file = open('./checksample/' + opt.type + '/mse_' + '_' + str(opt.nEpochs) + '_' + str(opt.sigma) + '.txt',
#
# file = open('./checksample/water/Tloss_' + '_' + str(opt.nEpochs) + '_' + str(opt.sigma) + '.txt',
# 'w')
# for g in TLOSS:
# file.write(g + '\n')
# file.close()
def evaluate(Tnet, deg_list, tar_list):
cuda = True # opt.cuda
pp = 0
print('----------validating-----------')
with torch.no_grad():
for deg_name, tar_name in zip(deg_list, tar_list):
name = tar_name.split('/')
print(name)
print("Processing ", deg_name)
deg_img = Image.open(deg_name).convert('RGB')
tar_img = Image.open(tar_name).convert('RGB')
deg_img = np.array(deg_img)
tar_img = np.array(tar_img)
h, w = deg_img.shape[0], deg_img.shape[1]
shape1 = deg_img.shape
shape2 = tar_img.shape
if (h % 4) or (w % 4) != 0:
continue
if shape1 != shape2:
continue
deg_img = np.transpose(deg_img, (2, 0, 1))
deg_img = torch.from_numpy(deg_img).float() / 255
deg_img = deg_img.unsqueeze(0)
data_degraded = deg_img
tar_img = np.transpose(tar_img, (2, 0, 1))
tar_img = torch.from_numpy(tar_img).float() / 255
tar_img = tar_img.unsqueeze(0)
gt = tar_img
if cuda:
Tnet = Tnet.cuda()
gt = gt.cuda()
data_degraded = data_degraded.cuda()
else:
Tnet = Tnet.cpu()
# start_time = time.time()
im_output, _ = Tnet(data_degraded)
im_output = im_output.squeeze(0).cpu()
tar_img = tar_img.squeeze(0).cpu()
im_output = im_output.numpy()
tar_img = tar_img.numpy()
im_output = np.transpose(im_output, (1, 2, 0))
tar_img = np.transpose(tar_img, (1, 2, 0))
pp += psnr(im_output, tar_img, data_range=1)
p = pp / len(deg_list)
return p
def adjust_learning_rate(optimizer, epoch):
"""Sets the learning rate to the initial LR decayed by 10"""
lr = opt.lr * (0.1 ** (epoch // opt.step))
return lr
def train(training_data_loader, T_optimizer, F_optimizer, Tnet, Fnet, epoch):
lr = adjust_learning_rate(F_optimizer, epoch - 1)
mse = []
Tloss = []
Dloss = []
for param_group in T_optimizer.param_groups:
param_group["lr"] = lr / 2
for param_group in F_optimizer.param_groups:
param_group["lr"] = lr
print("Epoch={}, lr={}".format(epoch, F_optimizer.param_groups[0]["lr"]))
for iteration, batch in enumerate(training_data_loader):
([clean_name, de_id], degraded, target) = batch
# degraded = batch[0]
# target = batch[1]
# noise = np.random.normal(size=degraded.shape) * opt.noise_sigma/255.0
# noise=torch.from_numpy(noise).float()
if opt.cuda:
target = target.cuda()
degraded = degraded.cuda()
# noise = noise.cuda()
# F-sub optimization
freeze(Tnet);
# freeze(PGenerator);
unfreeze(Fnet);
for iter in range(1):
Fnet.zero_grad()
out_disc = Fnet(target).squeeze()
F_real_loss = -out_disc.mean()
out_restored, _ = Tnet(degraded)
out_disc = Fnet(out_restored.data).squeeze()
F_fake_loss = out_disc.mean()
F_train_loss = F_real_loss + F_fake_loss
Dloss.append(F_train_loss.data)
F_train_loss.backward()
F_optimizer.step()
# gradient penalty
Fnet.zero_grad()
alpha = torch.rand(target.size(0), 1, 1, 1)
alpha1 = alpha.cuda().expand_as(target)
interpolated1 = Variable(alpha1 * target.data + (1 - alpha1) * out_restored.data, requires_grad=True)
out = Fnet(interpolated1).squeeze()
# Computes and returns the sum of gradients of outputs with respect to the inputs.
grad = \
torch.autograd.grad(outputs=out, # outputs (sequence of Tensor) – outputs of the differentiated function
inputs=interpolated1,
# inputs (sequence of Tensor) – Inputs w.r.t. which the gradient will be returned (and not accumulated into .grad).
grad_outputs=torch.ones(out.size()).cuda(),
# grad_outputs (sequence of Tensor) – The “vector” in the vector-Jacobian product. Usually gradients w.r.t. each output. None values can be specified for scalar Tensors or ones that don’t require grad. If a None value would be acceptable for all grad_tensors, then this argument is optional. Default: None
retain_graph=True,
create_graph=True,
only_inputs=True)[0]
grad = grad.view(grad.size(0), -1)
grad_l2norm = torch.sqrt(torch.sum(grad ** 2, dim=1))
f_loss_gp = torch.mean((grad_l2norm - 1) ** 2)
# Backward + Optimize
gp_loss = 10 * f_loss_gp
gp_loss.backward()
F_optimizer.step()
del gp_loss, f_loss_gp
# T-sub optmization
freeze(Fnet);
unfreeze(Tnet);
# unfreeze(PGenerator);
Fnet.zero_grad()
Tnet.zero_grad()
# PGenerator.zero_grad()
# out_restored, _ = Tnet(degraded)
out_restored, res_emd = Tnet(degraded)
out_disc = Fnet(out_restored).squeeze()
res = degraded - out_restored
# p = PGenerator(abs(res))
mse_loss = (torch.mean(res ** 2)) ** 0.5
res_fre = torch.fft.fft2(res)
fourier_res_peanlty = 0
contrastive_loss = 0
pos = 0
neg = 0
for i in range(res_fre.shape[0]):
# frequency penalty
res_fre_slice = res_fre[i, :]
if de_id[i] < 3:
fourier_res_peanlty += torch.mean((abs(res_fre_slice)) ** 2) ** 0.5
else:
fourier_res_peanlty += torch.mean((abs(res_fre_slice)))
# contrastive loss
# print(res_emd[i,:], res_emd[i+1,:])
z1 = F.normalize(res_emd[i, :].reshape(res_emd.shape[1]*res_emd.shape[2]*res_emd.shape[3]), dim=0)
for j in range(i+1, res_fre.shape[0]):
z2 = F.normalize(res_emd[j, :].reshape(res_emd.shape[1]*res_emd.shape[2]*res_emd.shape[3]), dim=0)
if de_id[i] == de_id[j]:
pos += torch.mean(torch.exp(-z1 * z2 / 0.07))
else:
neg += torch.mean(torch.exp(z1 * z2 / 0.07))
contrastive_loss = pos + neg
if iteration < opt.pairnum // opt.batchSize:
diff = out_restored - target
T_train_loss = - out_disc.mean() + opt.sigma * (mse_loss + fourier_res_peanlty + 0.1* contrastive_loss) + opt.Sigma * torch.mean(
abs(diff))
else:
T_train_loss = - out_disc.mean() + opt.sigma * (mse_loss + fourier_res_peanlty)
mse.append(mse_loss.data)
Tloss.append(T_train_loss.data)
T_train_loss.backward()
T_optimizer.step()
if iteration % 10 == 0:
print("Epoch {}({}/{}):Loss_F: {:.5}, Loss_T: {:.5}, Loss_mse: {:.5}".format(epoch,
iteration,
len(training_data_loader),
F_train_loss.data,
T_train_loss.data,
mse_loss.data,
))
save_image(out_restored.data, './checksample/' + opt.type + '/output.png')
save_image(degraded.data, './checksample/' + opt.type + '/degraded.png')
save_image(target.data, './checksample/' + opt.type + '/target.png')
save_image(2 * abs(res.data), './checksample/' + opt.type + '/res.png')
del T_train_loss, F_train_loss, z1, z2
return torch.mean(torch.FloatTensor(mse)), torch.mean(torch.FloatTensor(Tloss)), torch.mean(
torch.FloatTensor(Dloss))
def save_checkpoint(Tnet, Fnet, epoch):
model_out_path = "checkpoint/" + "model_" + str(opt.type) + opt.backbone + str(opt.patch_size) + "_" + "_" + str(
opt.nEpochs) + "_" + str(
opt.sigma) + ".pth"
state = {"epoch": epoch, "Tnet": Tnet, "Fnet": Fnet}
if not os.path.exists("checkpoint/"):
os.makedirs("checkpoint/")
torch.save(state, model_out_path)
print("Checkpoint saved to {}".format(model_out_path))
def PSNR(pred, gt, shave_border=0):
height, width = pred.shape[:2]
pred = pred[shave_border:height - shave_border, shave_border:width - shave_border]
gt = gt[shave_border:height - shave_border, shave_border:width - shave_border]
imdff = pred - gt
rmse = math.sqrt((imdff ** 2).mean())
if rmse == 0:
return 100
return 20 * math.log10(1.0 / rmse)
if __name__ == "__main__":
main()