|
| 1 | +import openai |
| 2 | +import pytest |
| 3 | +import ray |
| 4 | + |
| 5 | +from ..utils import VLLM_PATH, RemoteOpenAIServer |
| 6 | + |
| 7 | +EMBEDDING_MODEL_NAME = "intfloat/e5-mistral-7b-instruct" |
| 8 | + |
| 9 | +pytestmark = pytest.mark.openai |
| 10 | + |
| 11 | + |
| 12 | +@pytest.fixture(scope="module") |
| 13 | +def ray_ctx(): |
| 14 | + ray.init(runtime_env={"working_dir": VLLM_PATH}) |
| 15 | + yield |
| 16 | + ray.shutdown() |
| 17 | + |
| 18 | + |
| 19 | +@pytest.fixture(scope="module") |
| 20 | +def embedding_server(ray_ctx): |
| 21 | + return RemoteOpenAIServer([ |
| 22 | + "--model", |
| 23 | + EMBEDDING_MODEL_NAME, |
| 24 | + # use half precision for speed and memory savings in CI environment |
| 25 | + "--dtype", |
| 26 | + "bfloat16", |
| 27 | + "--enforce-eager", |
| 28 | + "--max-model-len", |
| 29 | + "8192", |
| 30 | + "--enforce-eager", |
| 31 | + ]) |
| 32 | + |
| 33 | + |
| 34 | +@pytest.mark.asyncio |
| 35 | +@pytest.fixture(scope="module") |
| 36 | +def embedding_client(embedding_server): |
| 37 | + return embedding_server.get_async_client() |
| 38 | + |
| 39 | + |
| 40 | +@pytest.mark.asyncio |
| 41 | +@pytest.mark.parametrize( |
| 42 | + "model_name", |
| 43 | + [EMBEDDING_MODEL_NAME], |
| 44 | +) |
| 45 | +async def test_single_embedding(embedding_client: openai.AsyncOpenAI, |
| 46 | + model_name: str): |
| 47 | + input_texts = [ |
| 48 | + "The chef prepared a delicious meal.", |
| 49 | + ] |
| 50 | + |
| 51 | + # test single embedding |
| 52 | + embeddings = await embedding_client.embeddings.create( |
| 53 | + model=model_name, |
| 54 | + input=input_texts, |
| 55 | + encoding_format="float", |
| 56 | + ) |
| 57 | + assert embeddings.id is not None |
| 58 | + assert len(embeddings.data) == 1 |
| 59 | + assert len(embeddings.data[0].embedding) == 4096 |
| 60 | + assert embeddings.usage.completion_tokens == 0 |
| 61 | + assert embeddings.usage.prompt_tokens == 9 |
| 62 | + assert embeddings.usage.total_tokens == 9 |
| 63 | + |
| 64 | + # test using token IDs |
| 65 | + input_tokens = [1, 1, 1, 1, 1] |
| 66 | + embeddings = await embedding_client.embeddings.create( |
| 67 | + model=model_name, |
| 68 | + input=input_tokens, |
| 69 | + encoding_format="float", |
| 70 | + ) |
| 71 | + assert embeddings.id is not None |
| 72 | + assert len(embeddings.data) == 1 |
| 73 | + assert len(embeddings.data[0].embedding) == 4096 |
| 74 | + assert embeddings.usage.completion_tokens == 0 |
| 75 | + assert embeddings.usage.prompt_tokens == 5 |
| 76 | + assert embeddings.usage.total_tokens == 5 |
| 77 | + |
| 78 | + |
| 79 | +@pytest.mark.asyncio |
| 80 | +@pytest.mark.parametrize( |
| 81 | + "model_name", |
| 82 | + [EMBEDDING_MODEL_NAME], |
| 83 | +) |
| 84 | +async def test_batch_embedding(embedding_client: openai.AsyncOpenAI, |
| 85 | + model_name: str): |
| 86 | + # test List[str] |
| 87 | + input_texts = [ |
| 88 | + "The cat sat on the mat.", "A feline was resting on a rug.", |
| 89 | + "Stars twinkle brightly in the night sky." |
| 90 | + ] |
| 91 | + embeddings = await embedding_client.embeddings.create( |
| 92 | + model=model_name, |
| 93 | + input=input_texts, |
| 94 | + encoding_format="float", |
| 95 | + ) |
| 96 | + assert embeddings.id is not None |
| 97 | + assert len(embeddings.data) == 3 |
| 98 | + assert len(embeddings.data[0].embedding) == 4096 |
| 99 | + |
| 100 | + # test List[List[int]] |
| 101 | + input_tokens = [[4, 5, 7, 9, 20], [15, 29, 499], [24, 24, 24, 24, 24], |
| 102 | + [25, 32, 64, 77]] |
| 103 | + embeddings = await embedding_client.embeddings.create( |
| 104 | + model=model_name, |
| 105 | + input=input_tokens, |
| 106 | + encoding_format="float", |
| 107 | + ) |
| 108 | + assert embeddings.id is not None |
| 109 | + assert len(embeddings.data) == 4 |
| 110 | + assert len(embeddings.data[0].embedding) == 4096 |
| 111 | + assert embeddings.usage.completion_tokens == 0 |
| 112 | + assert embeddings.usage.prompt_tokens == 17 |
| 113 | + assert embeddings.usage.total_tokens == 17 |
0 commit comments