forked from vllm-project/vllm
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathutils.py
828 lines (696 loc) · 26.7 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
# SPDX-License-Identifier: Apache-2.0
import asyncio
import copy
import functools
import os
import signal
import subprocess
import sys
import time
import warnings
from contextlib import contextmanager
from pathlib import Path
from typing import Any, Callable, Dict, List, Optional, Type, Union
import openai
import pytest
import requests
import torch
import torch.nn.functional as F
from openai.types.completion import Completion
from typing_extensions import ParamSpec
import vllm.envs as envs
from tests.models.utils import TextTextLogprobs
from vllm.distributed import (ensure_model_parallel_initialized,
init_distributed_environment)
from vllm.engine.arg_utils import AsyncEngineArgs
from vllm.entrypoints.openai.cli_args import make_arg_parser
from vllm.model_executor.model_loader.loader import get_model_loader
from vllm.platforms import current_platform
from vllm.transformers_utils.tokenizer import get_tokenizer
from vllm.utils import (FlexibleArgumentParser, GB_bytes,
cuda_device_count_stateless, get_open_port)
if current_platform.is_rocm():
from amdsmi import (amdsmi_get_gpu_vram_usage,
amdsmi_get_processor_handles, amdsmi_init,
amdsmi_shut_down)
@contextmanager
def _nvml():
try:
amdsmi_init()
yield
finally:
amdsmi_shut_down()
elif current_platform.is_cuda():
from vllm.third_party.pynvml import (nvmlDeviceGetHandleByIndex,
nvmlDeviceGetMemoryInfo, nvmlInit,
nvmlShutdown)
@contextmanager
def _nvml():
try:
nvmlInit()
yield
finally:
nvmlShutdown()
else:
@contextmanager
def _nvml():
yield
VLLM_PATH = Path(__file__).parent.parent
"""Path to root of the vLLM repository."""
class RemoteOpenAIServer:
DUMMY_API_KEY = "token-abc123" # vLLM's OpenAI server does not need API key
def __init__(self,
model: str,
vllm_serve_args: List[str],
*,
env_dict: Optional[Dict[str, str]] = None,
auto_port: bool = True,
max_wait_seconds: Optional[float] = None) -> None:
if auto_port:
if "-p" in vllm_serve_args or "--port" in vllm_serve_args:
raise ValueError("You have manually specified the port "
"when `auto_port=True`.")
# Don't mutate the input args
vllm_serve_args = vllm_serve_args + [
"--port", str(get_open_port())
]
parser = FlexibleArgumentParser(
description="vLLM's remote OpenAI server.")
parser = make_arg_parser(parser)
args = parser.parse_args(["--model", model, *vllm_serve_args])
self.host = str(args.host or 'localhost')
self.port = int(args.port)
# download the model before starting the server to avoid timeout
is_local = os.path.isdir(model)
if not is_local:
engine_args = AsyncEngineArgs.from_cli_args(args)
model_config = engine_args.create_model_config()
load_config = engine_args.create_load_config()
model_loader = get_model_loader(load_config)
model_loader.download_model(model_config)
env = os.environ.copy()
# the current process might initialize cuda,
# to be safe, we should use spawn method
env['VLLM_WORKER_MULTIPROC_METHOD'] = 'spawn'
if env_dict is not None:
env.update(env_dict)
self.proc = subprocess.Popen(
["vllm", "serve", model, *vllm_serve_args],
env=env,
stdout=sys.stdout,
stderr=sys.stderr,
)
max_wait_seconds = max_wait_seconds or 240
self._wait_for_server(url=self.url_for("health"),
timeout=max_wait_seconds)
def __enter__(self):
return self
def __exit__(self, exc_type, exc_value, traceback):
self.proc.terminate()
try:
self.proc.wait(8)
except subprocess.TimeoutExpired:
# force kill if needed
self.proc.kill()
def _wait_for_server(self, *, url: str, timeout: float):
# run health check
start = time.time()
while True:
try:
if requests.get(url).status_code == 200:
break
except Exception:
# this exception can only be raised by requests.get,
# which means the server is not ready yet.
# the stack trace is not useful, so we suppress it
# by using `raise from None`.
result = self.proc.poll()
if result is not None and result != 0:
raise RuntimeError("Server exited unexpectedly.") from None
time.sleep(0.5)
if time.time() - start > timeout:
raise RuntimeError(
"Server failed to start in time.") from None
@property
def url_root(self) -> str:
return f"http://{self.host}:{self.port}"
def url_for(self, *parts: str) -> str:
return self.url_root + "/" + "/".join(parts)
def get_client(self, **kwargs):
if "timeout" not in kwargs:
kwargs["timeout"] = 600
return openai.OpenAI(
base_url=self.url_for("v1"),
api_key=self.DUMMY_API_KEY,
max_retries=0,
**kwargs,
)
def get_async_client(self, **kwargs):
if "timeout" not in kwargs:
kwargs["timeout"] = 600
return openai.AsyncOpenAI(base_url=self.url_for("v1"),
api_key=self.DUMMY_API_KEY,
max_retries=0,
**kwargs)
def _test_completion(
client: openai.OpenAI,
model: str,
prompt: str,
token_ids: List[int],
):
results = []
# test with text prompt
completion = client.completions.create(model=model,
prompt=prompt,
max_tokens=5,
temperature=0.0)
results.append({
"test": "single_completion",
"text": completion.choices[0].text,
"finish_reason": completion.choices[0].finish_reason,
"usage": completion.usage,
})
# test using token IDs
completion = client.completions.create(
model=model,
prompt=token_ids,
max_tokens=5,
temperature=0.0,
)
results.append({
"test": "token_ids",
"text": completion.choices[0].text,
"finish_reason": completion.choices[0].finish_reason,
"usage": completion.usage,
})
# test seeded random sampling
completion = client.completions.create(model=model,
prompt=prompt,
max_tokens=5,
seed=33,
temperature=1.0)
results.append({
"test": "seeded_sampling",
"text": completion.choices[0].text,
"finish_reason": completion.choices[0].finish_reason,
"usage": completion.usage,
})
# test seeded random sampling with multiple prompts
completion = client.completions.create(model=model,
prompt=[prompt, prompt],
max_tokens=5,
seed=33,
temperature=1.0)
results.append({
"test":
"seeded_sampling",
"text": [choice.text for choice in completion.choices],
"finish_reason":
[choice.finish_reason for choice in completion.choices],
"usage":
completion.usage,
})
# test simple list
batch = client.completions.create(
model=model,
prompt=[prompt, prompt],
max_tokens=5,
temperature=0.0,
)
results.append({
"test": "simple_list",
"text0": batch.choices[0].text,
"text1": batch.choices[1].text,
})
# test streaming
batch = client.completions.create(
model=model,
prompt=[prompt, prompt],
max_tokens=5,
temperature=0.0,
stream=True,
)
texts = [""] * 2
for chunk in batch:
assert len(chunk.choices) == 1
choice = chunk.choices[0]
texts[choice.index] += choice.text
results.append({
"test": "streaming",
"texts": texts,
})
return results
def _test_completion_close(
client: openai.OpenAI,
model: str,
prompt: str,
):
results = []
# test with text prompt
completion = client.completions.create(model=model,
prompt=prompt,
max_tokens=1,
logprobs=5,
temperature=0.0)
logporbs = completion.choices[0].logprobs.top_logprobs[0]
logporbs = {k: round(v, 2) for k, v in logporbs.items()}
results.append({
"test": "completion_close",
"logprobs": logporbs,
})
return results
def _test_embeddings(
client: openai.OpenAI,
model: str,
text: str,
):
results = []
# test with text input
embeddings = client.embeddings.create(
model=model,
input=text,
encoding_format="float",
)
results.append({
"test": "single_embedding",
"embedding": embeddings.data[0].embedding,
"usage": embeddings.usage,
})
return results
def _test_image_text(
client: openai.OpenAI,
model_name: str,
image_url: str,
):
results = []
# test pure text input
messages = [{
"role":
"user",
"content": [
{
"type": "text",
"text": "How do you feel today?"
},
],
}]
chat_completion = client.chat.completions.create(model=model_name,
messages=messages,
temperature=0.0,
max_tokens=1,
logprobs=True,
top_logprobs=5)
top_logprobs = chat_completion.choices[0].logprobs.content[0].top_logprobs
for x in top_logprobs:
x.logprob = round(x.logprob, 2)
results.append({
"test": "pure_text",
"logprobs": top_logprobs,
})
messages = [{
"role":
"user",
"content": [
{
"type": "image_url",
"image_url": {
"url": image_url
}
},
{
"type": "text",
"text": "What's in this image?"
},
],
}]
chat_completion = client.chat.completions.create(model=model_name,
messages=messages,
temperature=0.0,
max_tokens=1,
logprobs=True,
top_logprobs=5)
top_logprobs = chat_completion.choices[0].logprobs.content[0].top_logprobs
results.append({
"test": "text_image",
"logprobs": top_logprobs,
})
return results
def compare_two_settings(model: str,
arg1: List[str],
arg2: List[str],
env1: Optional[Dict[str, str]] = None,
env2: Optional[Dict[str, str]] = None,
*,
method: str = "generate",
max_wait_seconds: Optional[float] = None) -> None:
"""
Launch API server with two different sets of arguments/environments
and compare the results of the API calls.
Args:
model: The model to test.
arg1: The first set of arguments to pass to the API server.
arg2: The second set of arguments to pass to the API server.
env1: The first set of environment variables to pass to the API server.
env2: The second set of environment variables to pass to the API server.
"""
compare_all_settings(
model,
[arg1, arg2],
[env1, env2],
method=method,
max_wait_seconds=max_wait_seconds,
)
def compare_all_settings(model: str,
all_args: List[List[str]],
all_envs: List[Optional[Dict[str, str]]],
*,
method: str = "generate",
max_wait_seconds: Optional[float] = None) -> None:
"""
Launch API server with several different sets of arguments/environments
and compare the results of the API calls with the first set of arguments.
Args:
model: The model to test.
all_args: A list of argument lists to pass to the API server.
all_envs: A list of environment dictionaries to pass to the API server.
"""
trust_remote_code = False
for args in all_args:
if "--trust-remote-code" in args:
trust_remote_code = True
break
tokenizer_mode = "auto"
for args in all_args:
if "--tokenizer-mode" in args:
tokenizer_mode = args[args.index("--tokenizer-mode") + 1]
break
tokenizer = get_tokenizer(
model,
trust_remote_code=trust_remote_code,
tokenizer_mode=tokenizer_mode,
)
can_force_load_format = True
for args in all_args:
if "--load-format" in args:
can_force_load_format = False
break
prompt = "Hello, my name is"
token_ids = tokenizer(prompt).input_ids
ref_results: List = []
for i, (args, env) in enumerate(zip(all_args, all_envs)):
if can_force_load_format:
# we are comparing the results and
# usually we don't need real weights.
# we force to use dummy weights by default,
# and it should work for most of the cases.
# if not, we can use VLLM_TEST_FORCE_LOAD_FORMAT
# environment variable to force the load format,
# e.g. in quantization tests.
args = args + ["--load-format", envs.VLLM_TEST_FORCE_LOAD_FORMAT]
compare_results: List = []
results = ref_results if i == 0 else compare_results
with RemoteOpenAIServer(model,
args,
env_dict=env,
max_wait_seconds=max_wait_seconds) as server:
client = server.get_client()
# test models list
models = client.models.list()
models = models.data
served_model = models[0]
results.append({
"test": "models_list",
"id": served_model.id,
"root": served_model.root,
})
if method == "generate":
results += _test_completion(client, model, prompt, token_ids)
elif method == "generate_close":
results += _test_completion_close(client, model, prompt)
elif method == "generate_with_image":
results += _test_image_text(
client, model,
"https://upload.wikimedia.org/wikipedia/commons/0/0b/RGBA_comp.png"
)
elif method == "encode":
results += _test_embeddings(client, model, prompt)
else:
raise ValueError(f"Unknown method: {method}")
if i > 0:
# if any setting fails, raise an error early
ref_args = all_args[0]
ref_envs = all_envs[0]
compare_args = all_args[i]
compare_envs = all_envs[i]
for ref_result, compare_result in zip(ref_results,
compare_results):
ref_result = copy.deepcopy(ref_result)
compare_result = copy.deepcopy(compare_result)
if "embedding" in ref_result and method == "encode":
sim = F.cosine_similarity(
torch.tensor(ref_result["embedding"]),
torch.tensor(compare_result["embedding"]),
dim=0,
)
assert sim >= 0.999, (
f"Embedding for {model=} are not the same.\n"
f"cosine_similarity={sim}\n")
del ref_result["embedding"]
del compare_result["embedding"]
assert ref_result == compare_result, (
f"Results for {model=} are not the same.\n"
f"{ref_args=} {ref_envs=}\n"
f"{compare_args=} {compare_envs=}\n"
f"{ref_result=}\n"
f"{compare_result=}\n")
def init_test_distributed_environment(
tp_size: int,
pp_size: int,
rank: int,
distributed_init_port: str,
local_rank: int = -1,
) -> None:
distributed_init_method = f"tcp://localhost:{distributed_init_port}"
init_distributed_environment(
world_size=pp_size * tp_size,
rank=rank,
distributed_init_method=distributed_init_method,
local_rank=local_rank)
ensure_model_parallel_initialized(tp_size, pp_size)
def multi_process_parallel(
tp_size: int,
pp_size: int,
test_target: Any,
) -> None:
import ray
# Using ray helps debugging the error when it failed
# as compared to multiprocessing.
# NOTE: We need to set working_dir for distributed tests,
# otherwise we may get import errors on ray workers
ray.init(runtime_env={"working_dir": VLLM_PATH})
distributed_init_port = get_open_port()
refs = []
for rank in range(tp_size * pp_size):
refs.append(
test_target.remote(tp_size, pp_size, rank, distributed_init_port))
ray.get(refs)
ray.shutdown()
@contextmanager
def error_on_warning(category: Type[Warning] = Warning):
"""
Within the scope of this context manager, tests will fail if any warning
of the given category is emitted.
"""
with warnings.catch_warnings():
warnings.filterwarnings("error", category=category)
yield
def get_physical_device_indices(devices):
visible_devices = os.environ.get("CUDA_VISIBLE_DEVICES")
if visible_devices is None:
return devices
visible_indices = [int(x) for x in visible_devices.split(",")]
index_mapping = {i: physical for i, physical in enumerate(visible_indices)}
return [index_mapping[i] for i in devices if i in index_mapping]
@_nvml()
def wait_for_gpu_memory_to_clear(devices: List[int],
threshold_bytes: int,
timeout_s: float = 120) -> None:
# Use nvml instead of pytorch to reduce measurement error from torch cuda
# context.
devices = get_physical_device_indices(devices)
start_time = time.time()
while True:
output: Dict[int, str] = {}
output_raw: Dict[int, float] = {}
for device in devices:
if current_platform.is_rocm():
dev_handle = amdsmi_get_processor_handles()[device]
mem_info = amdsmi_get_gpu_vram_usage(dev_handle)
gb_used = mem_info["vram_used"] / 2**10
else:
dev_handle = nvmlDeviceGetHandleByIndex(device)
mem_info = nvmlDeviceGetMemoryInfo(dev_handle)
gb_used = mem_info.used / 2**30
output_raw[device] = gb_used
output[device] = f'{gb_used:.02f}'
print('gpu memory used (GB): ', end='')
for k, v in output.items():
print(f'{k}={v}; ', end='')
print('')
dur_s = time.time() - start_time
if all(v <= (threshold_bytes / 2**30) for v in output_raw.values()):
print(f'Done waiting for free GPU memory on devices {devices=} '
f'({threshold_bytes/2**30=}) {dur_s=:.02f}')
break
if dur_s >= timeout_s:
raise ValueError(f'Memory of devices {devices=} not free after '
f'{dur_s=:.02f} ({threshold_bytes/2**30=})')
time.sleep(5)
_P = ParamSpec("_P")
def fork_new_process_for_each_test(
f: Callable[_P, None]) -> Callable[_P, None]:
"""Decorator to fork a new process for each test function.
See https://github.com/vllm-project/vllm/issues/7053 for more details.
"""
@functools.wraps(f)
def wrapper(*args: _P.args, **kwargs: _P.kwargs) -> None:
# Make the process the leader of its own process group
# to avoid sending SIGTERM to the parent process
os.setpgrp()
from _pytest.outcomes import Skipped
pid = os.fork()
print(f"Fork a new process to run a test {pid}")
if pid == 0:
try:
f(*args, **kwargs)
except Skipped as e:
# convert Skipped to exit code 0
print(str(e))
os._exit(0)
except Exception:
import traceback
traceback.print_exc()
os._exit(1)
else:
os._exit(0)
else:
pgid = os.getpgid(pid)
_pid, _exitcode = os.waitpid(pid, 0)
# ignore SIGTERM signal itself
old_signal_handler = signal.signal(signal.SIGTERM, signal.SIG_IGN)
# kill all child processes
os.killpg(pgid, signal.SIGTERM)
# restore the signal handler
signal.signal(signal.SIGTERM, old_signal_handler)
assert _exitcode == 0, (f"function {f} failed when called with"
f" args {args} and kwargs {kwargs}")
return wrapper
def large_gpu_mark(min_gb: int) -> pytest.MarkDecorator:
"""
Get a pytest mark, which skips the test if the GPU doesn't meet
a minimum memory requirement in GB.
This can be leveraged via `@large_gpu_test` to skip tests in environments
without enough resources, or called when filtering tests to run directly.
"""
try:
if current_platform.is_cpu():
memory_gb = 0
else:
memory_gb = current_platform.get_device_total_memory() / GB_bytes
except Exception as e:
warnings.warn(
f"An error occurred when finding the available memory: {e}",
stacklevel=2,
)
memory_gb = 0
return pytest.mark.skipif(
memory_gb < min_gb,
reason=f"Need at least {min_gb}GB GPU memory to run the test.",
)
def large_gpu_test(*, min_gb: int):
"""
Decorate a test to be skipped if no GPU is available or it does not have
sufficient memory.
Currently, the CI machine uses L4 GPU which has 24 GB VRAM.
"""
mark = large_gpu_mark(min_gb)
def wrapper(f: Callable[_P, None]) -> Callable[_P, None]:
return mark(f)
return wrapper
def multi_gpu_marks(*, num_gpus: int):
"""Get a collection of pytest marks to apply for `@multi_gpu_test`."""
test_selector = pytest.mark.distributed(num_gpus=num_gpus)
test_skipif = pytest.mark.skipif(
cuda_device_count_stateless() < num_gpus,
reason=f"Need at least {num_gpus} GPUs to run the test.",
)
return [test_selector, test_skipif]
def multi_gpu_test(*, num_gpus: int):
"""
Decorate a test to be run only when multiple GPUs are available.
"""
marks = multi_gpu_marks(num_gpus=num_gpus)
def wrapper(f: Callable[_P, None]) -> Callable[_P, None]:
func = fork_new_process_for_each_test(f)
for mark in reversed(marks):
func = mark(func)
return func
return wrapper
async def completions_with_server_args(
prompts: List[str],
model_name: str,
server_cli_args: List[str],
num_logprobs: Optional[int],
max_wait_seconds: int = 240,
max_tokens: Union[int, list] = 5,
) -> List[Completion]:
'''Construct a remote OpenAI server, obtain an async client to the
server & invoke the completions API to obtain completions.
Args:
prompts: test prompts
model_name: model to spin up on the vLLM server
server_cli_args: CLI args for starting the server
num_logprobs: Number of logprobs to report (or `None`)
max_wait_seconds: timeout interval for bringing up server.
Default: 240sec
max_tokens: max_tokens value for each of the given input prompts.
if only one max_token value is given, the same value is used
for all the prompts.
Returns:
OpenAI Completion instance
'''
if isinstance(max_tokens, int):
max_tokens = [max_tokens] * len(prompts)
assert len(max_tokens) == len(prompts)
outputs = None
with RemoteOpenAIServer(model_name,
server_cli_args,
max_wait_seconds=max_wait_seconds) as server:
client = server.get_async_client()
outputs = [ client.completions.create(model=model_name,
prompt=[p],
temperature=0,
stream=False,
max_tokens=max_tok,
logprobs=num_logprobs) \
for p, max_tok in zip(prompts, max_tokens) ]
outputs = await asyncio.gather(*outputs)
assert outputs is not None, "Completion API call failed."
return outputs
def get_client_text_generations(completions: List[Completion]) -> List[str]:
'''Extract generated tokens from the output of a
request made to an Open-AI-protocol completions endpoint.
'''
assert all([len(x.choices) == 1 for x in completions])
return [x.choices[0].text for x in completions]
def get_client_text_logprob_generations(
completions: List[Completion]) -> List[TextTextLogprobs]:
'''Operates on the output of a request made to an Open-AI-protocol
completions endpoint; obtains top-rank logprobs for each token in
each :class:`SequenceGroup`
'''
text_generations = get_client_text_generations(completions)
text = ''.join(text_generations)
return [(text_generations, text,
(None if x.logprobs is None else x.logprobs.top_logprobs))
for completion in completions for x in completion.choices]