-
Notifications
You must be signed in to change notification settings - Fork 57
/
Copy pathtrain_net.py
274 lines (238 loc) · 9.58 KB
/
train_net.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
import logging
import os
from collections import OrderedDict
import torch
from torch.nn.parallel import DistributedDataParallel
import time
import datetime
import sys
from fvcore.common.timer import Timer
import detectron2.utils.comm as comm
from detectron2.checkpoint import DetectionCheckpointer, PeriodicCheckpointer
from detectron2.config import get_cfg
from detectron2.data import (
MetadataCatalog,
build_detection_test_loader,
)
from detectron2.engine import default_argument_parser, default_setup, launch
from detectron2.evaluation import (
inference_on_dataset,
print_csv_format,
COCOEvaluator,
)
from detectron2.modeling import build_model
from detectron2.solver import build_lr_scheduler
from detectron2.utils.events import (
CommonMetricPrinter,
EventStorage,
JSONWriter,
TensorboardXWriter,
)
from detectron2.data.dataset_mapper import DatasetMapper
from detectron2.solver import build_optimizer
from detectron2.utils.logger import setup_logger
sys.path.insert(0, 'third_party/CenterNet2/')
from centernet.config import add_centernet_config
from gtr.config import add_gtr_config
from gtr.data.custom_build_augmentation import build_custom_augmentation
from gtr.data.custom_dataset_dataloader import build_custom_train_loader
from gtr.data.custom_dataset_mapper import CustomDatasetMapper
from gtr.data.gtr_dataset_dataloader import build_gtr_train_loader
from gtr.data.gtr_dataset_dataloader import build_gtr_test_loader
from gtr.data.gtr_dataset_mapper import GTRDatasetMapper
from gtr.costom_solver import build_custom_optimizer
from gtr.evaluation.custom_lvis_evaluation import CustomLVISEvaluator
from gtr.evaluation.mot_evaluation import MOTEvaluator
from gtr.modeling.freeze_layers import check_if_freeze_model
logger = logging.getLogger("detectron2")
def get_total_grad_norm(parameters, norm_type=2):
parameters = list(filter(lambda p: p.grad is not None, parameters))
norm_type = float(norm_type)
device = parameters[0].grad.device
total_norm = torch.norm(
torch.stack([torch.norm(p.grad.detach(), norm_type).to(device) for p in parameters]),
norm_type)
return total_norm
def do_test(cfg, model):
results = OrderedDict()
for dataset_name in cfg.DATASETS.TEST:
output_folder = os.path.join(
cfg.OUTPUT_DIR, "inference_{}".format(dataset_name))
evaluator_type = MetadataCatalog.get(dataset_name).evaluator_type
if evaluator_type == "lvis":
evaluator = CustomLVISEvaluator(dataset_name, cfg, True, output_folder)
elif evaluator_type == 'coco':
evaluator = COCOEvaluator(dataset_name, cfg, True, output_folder)
elif evaluator_type == 'mot':
evaluator = MOTEvaluator(dataset_name, cfg, \
False, output_folder)
else:
assert 0, evaluator_type
if not cfg.VIDEO_INPUT:
mapper = None if cfg.INPUT.TEST_INPUT_TYPE == 'default' else \
DatasetMapper(
cfg, False, augmentations=build_custom_augmentation(cfg, False))
data_loader = build_detection_test_loader(cfg, dataset_name, mapper=mapper)
results[dataset_name] = inference_on_dataset(
model, data_loader, evaluator)
else:
if not comm.is_main_process():
continue
# TODO (Xingyi): currently holistic test only works on 1 gpus
# due to unknown system issue. Try to fix.
torch.multiprocessing.set_sharing_strategy('file_system')
if cfg.INPUT.TEST_INPUT_TYPE == 'default':
mapper = GTRDatasetMapper(cfg, False)
else:
mapper = GTRDatasetMapper(
cfg, False, augmentations=build_custom_augmentation(cfg, False))
data_loader = build_gtr_test_loader(cfg, dataset_name, mapper)
# TODO (Xingyi): create a new video inference pipeline
results[dataset_name] = inference_on_dataset(
model, data_loader, evaluator,
)
if comm.is_main_process():
logger.info("Evaluation results for {} in csv format:".format(
dataset_name))
print_csv_format(results[dataset_name])
if len(results) == 1:
results = list(results.values())[0]
return results
def do_train(cfg, model, resume=False):
model = check_if_freeze_model(model, cfg)
model.train()
if cfg.SOLVER.USE_CUSTOM_SOLVER:
optimizer = build_custom_optimizer(cfg, model)
else:
assert cfg.SOLVER.OPTIMIZER == 'SGD'
assert cfg.SOLVER.CLIP_GRADIENTS.CLIP_TYPE != 'full_model'
assert cfg.SOLVER.BACKBONE_MULTIPLIER == 1.
optimizer = build_optimizer(cfg, model)
scheduler = build_lr_scheduler(cfg, optimizer)
checkpointer = DetectionCheckpointer(
model, cfg.OUTPUT_DIR, optimizer=optimizer, scheduler=scheduler
)
start_iter = (
checkpointer.resume_or_load(
cfg.MODEL.WEIGHTS, resume=resume,
).get("iteration", -1) + 1
)
if not resume:
start_iter = 0
max_iter = cfg.SOLVER.MAX_ITER if cfg.SOLVER.TRAIN_ITER < 0 else cfg.SOLVER.TRAIN_ITER
periodic_checkpointer = PeriodicCheckpointer(
checkpointer, cfg.SOLVER.CHECKPOINT_PERIOD, max_iter=max_iter
)
writers = (
[
CommonMetricPrinter(max_iter),
JSONWriter(os.path.join(cfg.OUTPUT_DIR, "metrics.json")),
TensorboardXWriter(cfg.OUTPUT_DIR),
]
if comm.is_main_process()
else []
)
DatasetMapperClass = GTRDatasetMapper if cfg.VIDEO_INPUT else \
CustomDatasetMapper
mapper = DatasetMapperClass(
cfg, True, augmentations=build_custom_augmentation(cfg, True))
if cfg.VIDEO_INPUT:
data_loader = build_gtr_train_loader(cfg, mapper=mapper)
else:
data_loader = build_custom_train_loader(cfg, mapper=mapper)
logger.info("Starting training from iteration {}".format(start_iter))
with EventStorage(start_iter) as storage:
step_timer = Timer()
data_timer = Timer()
start_time = time.perf_counter()
for data, iteration in zip(data_loader, range(start_iter, max_iter)):
data_time = data_timer.seconds()
storage.put_scalars(data_time=data_time)
step_timer.reset()
iteration = iteration + 1
storage.step()
loss_dict = model(data)
losses = sum(
loss for k, loss in loss_dict.items() if 'loss' in k)
assert torch.isfinite(losses).all(), loss_dict
loss_dict_reduced = {k: v.item() \
for k, v in comm.reduce_dict(loss_dict).items()}
losses_reduced = sum(loss for k, loss in loss_dict_reduced.items() \
if 'loss' in k)
if comm.is_main_process():
storage.put_scalars(
total_loss=losses_reduced, **loss_dict_reduced)
optimizer.zero_grad()
losses.backward()
optimizer.step()
storage.put_scalar(
"lr", optimizer.param_groups[0]["lr"], smoothing_hint=False)
step_time = step_timer.seconds()
storage.put_scalars(time=step_time)
data_timer.reset()
scheduler.step()
if (
cfg.TEST.EVAL_PERIOD > 0
and iteration % cfg.TEST.EVAL_PERIOD == 0
and iteration != max_iter
):
do_test(cfg, model)
comm.synchronize()
if iteration - start_iter > 5 and \
(iteration % 20 == 0 or iteration == max_iter):
for writer in writers:
writer.write()
periodic_checkpointer.step(iteration)
total_time = time.perf_counter() - start_time
logger.info(
"Total training time: {}".format(
str(datetime.timedelta(seconds=int(total_time)))))
def setup(args):
"""
Create configs and perform basic setups.
"""
cfg = get_cfg()
add_centernet_config(cfg)
add_gtr_config(cfg)
cfg.merge_from_file(args.config_file)
cfg.merge_from_list(args.opts)
if '/auto' in cfg.OUTPUT_DIR:
file_name = os.path.basename(args.config_file)[:-5]
cfg.OUTPUT_DIR = cfg.OUTPUT_DIR.replace('/auto', '/{}'.format(file_name))
logger.info('OUTPUT_DIR: {}'.format(cfg.OUTPUT_DIR))
cfg.freeze()
default_setup(cfg, args)
setup_logger(output=cfg.OUTPUT_DIR, \
distributed_rank=comm.get_rank(), name="centernet")
return cfg
def main(args):
cfg = setup(args)
model = build_model(cfg)
logger.info("Model:\n{}".format(model))
if args.eval_only:
DetectionCheckpointer(model, save_dir=cfg.OUTPUT_DIR).resume_or_load(
cfg.MODEL.WEIGHTS, resume=args.resume
)
return do_test(cfg, model)
distributed = comm.get_world_size() > 1
if distributed:
model = DistributedDataParallel(
model, device_ids=[comm.get_local_rank()], broadcast_buffers=False,
find_unused_parameters=cfg.FIND_UNUSED_PARAM
)
do_train(cfg, model, resume=args.resume)
return do_test(cfg, model)
if __name__ == "__main__":
args = default_argument_parser()
args = args.parse_args()
args.dist_url = 'tcp://127.0.0.1:{}'.format(
torch.randint(11111, 60000, (1,))[0].item())
print("Command Line Args:", args)
launch(
main,
args.num_gpus,
num_machines=args.num_machines,
machine_rank=args.machine_rank,
dist_url=args.dist_url,
args=(args,),
)