-
Notifications
You must be signed in to change notification settings - Fork 9
/
layers.py
520 lines (452 loc) · 20 KB
/
layers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
import torch
import math
import h5py
import numpy as np
import torch.nn.functional as F
def compute_mask(x):
mask = torch.ne(x, 0).float()
if x.is_cuda:
mask = mask.cuda()
return mask
def masked_softmax(x, m=None, axis=-1):
'''
Softmax with mask (optional)
'''
x = torch.clamp(x, min=-15.0, max=15.0)
if m is not None:
m = m.float()
x = x * m
e_x = torch.exp(x - torch.max(x, dim=axis, keepdim=True)[0])
if m is not None:
e_x = e_x * m
softmax = e_x / (torch.sum(e_x, dim=axis, keepdim=True) + 1e-6)
return softmax
def masked_mean(x, m=None, dim=-1):
"""
mean pooling when there're paddings
input: tensor: batch x time x h
mask: batch x time
output: tensor: batch x h
"""
if m is None:
return torch.mean(x, dim=dim)
mask_sum = torch.sum(m, dim=-1) # batch
res = torch.sum(x, dim=1) # batch x h
res = res / (mask_sum.unsqueeze(-1) + 1e-6)
return res
def to_one_hot(y_true, n_classes):
y_onehot = torch.FloatTensor(y_true.size(0), n_classes)
if y_true.is_cuda:
y_onehot = y_onehot.cuda()
y_onehot.zero_()
y_onehot.scatter_(1, y_true, 1)
return y_onehot
def NegativeLogLoss(y_pred, y_true):
"""
Shape:
- y_pred: batch x time
- y_true: batch
"""
y_true_onehot = to_one_hot(y_true.unsqueeze(-1), y_pred.size(1))
P = y_true_onehot.squeeze(-1) * y_pred # batch x time
P = torch.sum(P, dim=1) # batch
gt_zero = torch.gt(P, 0.0).float() # batch
epsilon = torch.le(P, 0.0).float() * 1e-8 # batch
log_P = torch.log(P + epsilon) * gt_zero # batch
output = -log_P # batch
return output
def PosEncoder(x, min_timescale=1.0, max_timescale=1.0e4):
length = x.size(1)
channels = x.size(2)
signal = get_timing_signal(length, channels, min_timescale, max_timescale)
signal = signal.cuda() if x.is_cuda else signal
return x + signal
def get_timing_signal(length, channels, min_timescale=1.0, max_timescale=1.0e4):
position = torch.arange(length).type(torch.float32)
num_timescales = channels // 2
log_timescale_increment = (math.log(float(max_timescale) / float(min_timescale)) / (float(num_timescales)-1))
inv_timescales = min_timescale * torch.exp(
torch.arange(num_timescales).type(torch.float32) * -log_timescale_increment)
scaled_time = position.unsqueeze(1) * inv_timescales.unsqueeze(0)
signal = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], dim = 1)
m = torch.nn.ZeroPad2d((0, (channels % 2), 0, 0))
signal = m(signal)
signal = signal.view(1, length, channels)
return signal
class LayerNorm(torch.nn.Module):
def __init__(self, input_dim):
super(LayerNorm, self).__init__()
self.gamma = torch.nn.Parameter(torch.ones(input_dim))
self.beta = torch.nn.Parameter(torch.zeros(input_dim))
self.eps = 1e-6
def forward(self, x, mask):
# x: nbatch x hidden
# mask: nbatch
mean = x.mean(-1, keepdim=True)
std = torch.sqrt(x.var(dim=1, keepdim=True) + self.eps)
output = self.gamma * (x - mean) / (std + self.eps) + self.beta
return output * mask.unsqueeze(1)
class H5EmbeddingManager(object):
def __init__(self, h5_path):
f = h5py.File(h5_path, 'r')
self.W = np.array(f['embedding'])
print("embedding data type=%s, shape=%s" % (type(self.W), self.W.shape))
self.id2word = f['words_flatten'][0].split('\n')
self.word2id = dict(zip(self.id2word, range(len(self.id2word))))
def __getitem__(self, item):
item_type = type(item)
if item_type is str:
index = self.word2id[item]
embs = self.W[index]
return embs
else:
raise RuntimeError("don't support type: %s" % type(item))
def word_embedding_initialize(self, words_list, dim_size=300, scale=0.1, oov_init='random'):
shape = (len(words_list), dim_size)
np.random.seed(42)
if 'zero' == oov_init:
W2V = np.zeros(shape, dtype='float32')
elif 'one' == oov_init:
W2V = np.ones(shape, dtype='float32')
else:
W2V = np.random.uniform(low=-scale, high=scale, size=shape).astype('float32')
W2V[0, :] = 0
in_vocab = np.ones(shape[0], dtype=np.bool)
word_ids = []
for i, word in enumerate(words_list):
if word in self.word2id:
word_ids.append(self.word2id[word])
else:
in_vocab[i] = False
W2V[in_vocab] = self.W[np.array(word_ids, dtype='int32')][:, :dim_size]
return W2V
class Embedding(torch.nn.Module):
'''
inputs: x: batch x ...
outputs:embedding: batch x ... x emb
mask: batch x ...
'''
def __init__(self, embedding_size, vocab_size, dropout_rate=0.0, trainable=True, id2word=None,
embedding_oov_init='random', load_pretrained=False, pretrained_embedding_path=None):
super(Embedding, self).__init__()
self.embedding_size = embedding_size
self.vocab_size = vocab_size
self.id2word = id2word
self.dropout_rate = dropout_rate
self.load_pretrained = load_pretrained
self.embedding_oov_init = embedding_oov_init
self.pretrained_embedding_path = pretrained_embedding_path
self.trainable = trainable
self.embedding_layer = torch.nn.Embedding(self.vocab_size, self.embedding_size, padding_idx=0)
self.init_weights()
def init_weights(self):
init_embedding_matrix = self.embedding_init()
if self.embedding_layer.weight.is_cuda:
init_embedding_matrix = init_embedding_matrix.cuda()
self.embedding_layer.weight = torch.nn.Parameter(init_embedding_matrix)
if not self.trainable:
self.embedding_layer.weight.requires_grad = False
def embedding_init(self):
# Embeddings
if self.load_pretrained is False:
word_embedding_init = np.random.uniform(low=-0.05, high=0.05, size=(self.vocab_size, self.embedding_size))
word_embedding_init[0, :] = 0
else:
embedding_initr = H5EmbeddingManager(self.pretrained_embedding_path)
word_embedding_init = embedding_initr.word_embedding_initialize(self.id2word,
dim_size=self.embedding_size,
oov_init=self.embedding_oov_init)
del embedding_initr
word_embedding_init = torch.from_numpy(word_embedding_init).float()
return word_embedding_init
def compute_mask(self, x):
mask = torch.ne(x, 0).float()
if x.is_cuda:
mask = mask.cuda()
return mask
def forward(self, x):
embeddings = self.embedding_layer(x) # batch x time x emb
embeddings = F.dropout(embeddings, p=self.dropout_rate, training=self.training)
mask = self.compute_mask(x) # batch x time
return embeddings, mask
class NoisyLinear(torch.nn.Module):
# Factorised NoisyLinear layer with bias
def __init__(self, in_features, out_features, std_init=0.5):
super(NoisyLinear, self).__init__()
self.in_features = in_features
self.out_features = out_features
self.std_init = std_init
self.weight_mu = torch.nn.Parameter(torch.empty(out_features, in_features))
self.weight_sigma = torch.nn.Parameter(torch.empty(out_features, in_features))
self.register_buffer('weight_epsilon', torch.empty(out_features, in_features))
self.bias_mu = torch.nn.Parameter(torch.empty(out_features))
self.bias_sigma = torch.nn.Parameter(torch.empty(out_features))
self.register_buffer('bias_epsilon', torch.empty(out_features))
self.reset_parameters()
self.reset_noise()
self._zero_noise = False
def reset_parameters(self):
mu_range = 1 / math.sqrt(self.in_features)
self.weight_mu.data.uniform_(-mu_range, mu_range)
self.weight_sigma.data.fill_(self.std_init / math.sqrt(self.in_features))
self.bias_mu.data.uniform_(-mu_range, mu_range)
self.bias_sigma.data.fill_(self.std_init / math.sqrt(self.out_features))
def _scale_noise(self, size):
x = torch.randn(size)
return x.sign().mul_(x.abs().sqrt_())
def reset_noise(self):
epsilon_in = self._scale_noise(self.in_features)
epsilon_out = self._scale_noise(self.out_features)
self.weight_epsilon.copy_(epsilon_out.ger(epsilon_in))
self.bias_epsilon.copy_(epsilon_out)
def zero_noise(self):
self._zero_noise = True
def forward(self, input):
if self.training:
if self._zero_noise is True:
return F.linear(input, self.weight_mu, self.bias_mu)
else:
return F.linear(input, self.weight_mu + self.weight_sigma * self.weight_epsilon, self.bias_mu + self.bias_sigma * self.bias_epsilon)
else:
return F.linear(input, self.weight_mu, self.bias_mu)
class DepthwiseSeparableConv(torch.nn.Module):
def __init__(self, in_ch, out_ch, k, bias=True):
super().__init__()
self.depthwise_conv = torch.nn.Conv1d(in_channels=in_ch, out_channels=in_ch, kernel_size=k, groups=in_ch, padding=k // 2, bias=False)
self.pointwise_conv = torch.nn.Conv1d(in_channels=in_ch, out_channels=out_ch, kernel_size=1, padding=0, bias=bias)
def forward(self, x):
x = x.transpose(1,2)
res = torch.relu(self.pointwise_conv(self.depthwise_conv(x)))
res = res.transpose(1,2)
return res
class SelfAttention(torch.nn.Module):
def __init__(self, block_hidden_dim, n_head, dropout):
super().__init__()
self.block_hidden_dim = block_hidden_dim
self.n_head = n_head
self.dropout = dropout
self.key_linear = torch.nn.Linear(block_hidden_dim, block_hidden_dim, bias=False)
self.value_linear = torch.nn.Linear(block_hidden_dim, block_hidden_dim, bias=False)
self.query_linear = torch.nn.Linear(block_hidden_dim, block_hidden_dim, bias=False)
bias = torch.empty(1)
torch.nn.init.constant_(bias, 0)
self.bias = torch.nn.Parameter(bias)
def forward(self, queries, query_mask, keys, values):
query = self.query_linear(queries)
key = self.key_linear(keys)
value = self.value_linear(values)
Q = self.split_last_dim(query, self.n_head)
K = self.split_last_dim(key, self.n_head)
V = self.split_last_dim(value, self.n_head)
assert self.block_hidden_dim % self.n_head == 0
key_depth_per_head = self.block_hidden_dim // self.n_head
Q *= key_depth_per_head**-0.5
x = self.dot_product_attention(Q, K, V, mask=query_mask)
return self.combine_last_two_dim(x.permute(0, 2, 1, 3))
def dot_product_attention(self, q, k ,v, bias=False, mask=None):
"""dot-product attention.
Args:
q: a Tensor with shape [batch, heads, length_q, depth_k]
k: a Tensor with shape [batch, heads, length_kv, depth_k]
v: a Tensor with shape [batch, heads, length_kv, depth_v]
bias: bias Tensor (see attention_bias())
is_training: a bool of training
scope: an optional string
Returns:
A Tensor.
"""
logits = torch.matmul(q, k.permute(0, 1, 3, 2))
if bias:
logits += self.bias
if mask is not None:
# shapes = [x if x != None else -1 for x in list(logits.size())]
# mask = mask.view(shapes[0], 1, 1, shapes[-1])
mask = mask.unsqueeze(1)
weights = masked_softmax(logits, mask, axis=-1)
# dropping out the attention links for each of the heads
weights = F.dropout(weights, p=self.dropout, training=self.training)
return torch.matmul(weights, v)
def split_last_dim(self, x, n):
"""Reshape x so that the last dimension becomes two dimensions.
The first of these two dimensions is n.
Args:
x: a Tensor with shape [..., m]
n: an integer.
Returns:
a Tensor with shape [..., n, m/n]
"""
old_shape = list(x.size())
last = old_shape[-1]
new_shape = old_shape[:-1] + [n] + [last // n if last else None]
ret = x.view(new_shape)
return ret.permute(0, 2, 1, 3)
def combine_last_two_dim(self, x):
"""Reshape x so that the last two dimension become one.
Args:
x: a Tensor with shape [..., a, b]
Returns:
a Tensor with shape [..., ab]
"""
old_shape = list(x.size())
a, b = old_shape[-2:]
new_shape = old_shape[:-2] + [a * b if a and b else None]
ret = x.contiguous().view(new_shape)
return ret
class EncoderBlock(torch.nn.Module):
def __init__(self, conv_num, ch_num, k, block_hidden_dim, n_head, dropout):
super().__init__()
self.dropout = dropout
self.convs = torch.nn.ModuleList([DepthwiseSeparableConv(ch_num, ch_num, k) for _ in range(conv_num)])
self.self_att = SelfAttention(block_hidden_dim, n_head, dropout)
self.FFN_1 = torch.nn.Linear(ch_num, ch_num)
self.FFN_2 = torch.nn.Linear(ch_num, ch_num)
self.norm_C = torch.nn.ModuleList([torch.nn.LayerNorm(block_hidden_dim) for _ in range(conv_num)])
self.norm_1 = torch.nn.LayerNorm(block_hidden_dim)
self.norm_2 = torch.nn.LayerNorm(block_hidden_dim)
self.conv_num = conv_num
def forward(self, x, mask, self_att_mask, l, blks):
total_layers = (self.conv_num + 2) * blks
# conv layers
out = PosEncoder(x)
for i, conv in enumerate(self.convs):
res = out
out = self.norm_C[i](out)
if (i) % 2 == 0:
out = F.dropout(out, p=self.dropout, training=self.training)
out = conv(out)
out = out * mask.unsqueeze(-1)
out = self.layer_dropout(out, res, self.dropout * float(l) / total_layers)
l += 1
res = out
out = self.norm_1(out)
out = F.dropout(out, p=self.dropout, training=self.training)
# self attention
out = self.self_att(out, self_att_mask, out, out)
out = out * mask.unsqueeze(-1)
out = self.layer_dropout(out, res, self.dropout * float(l) / total_layers)
l += 1
res = out
out = self.norm_2(out)
out = F.dropout(out, p=self.dropout, training=self.training)
# fully connected layers
out = self.FFN_1(out)
out = torch.relu(out)
out = self.FFN_2(out)
out = out * mask.unsqueeze(-1)
out = self.layer_dropout(out, res, self.dropout * float(l) / total_layers)
l += 1
return out
def layer_dropout(self, inputs, residual, dropout):
if self.training == True:
pred = torch.empty(1).uniform_(0, 1) < dropout
if pred:
return residual
else:
return F.dropout(inputs, dropout, training=self.training) + residual
else:
return inputs + residual
class CQAttention(torch.nn.Module):
def __init__(self, block_hidden_dim, dropout=0):
super().__init__()
self.dropout = dropout
w4C = torch.empty(block_hidden_dim, 1)
w4Q = torch.empty(block_hidden_dim, 1)
w4mlu = torch.empty(1, 1, block_hidden_dim)
torch.nn.init.xavier_uniform_(w4C)
torch.nn.init.xavier_uniform_(w4Q)
torch.nn.init.xavier_uniform_(w4mlu)
self.w4C = torch.nn.Parameter(w4C)
self.w4Q = torch.nn.Parameter(w4Q)
self.w4mlu = torch.nn.Parameter(w4mlu)
bias = torch.empty(1)
torch.nn.init.constant_(bias, 0)
self.bias = torch.nn.Parameter(bias)
def forward(self, C, Q, Cmask, Qmask):
S = self.trilinear_for_attention(C, Q)
Cmask = Cmask.unsqueeze(-1)
Qmask = Qmask.unsqueeze(1)
S1 = masked_softmax(S, Qmask, axis=2)
S2 = masked_softmax(S, Cmask, axis=1)
A = torch.bmm(S1, Q)
B = torch.bmm(torch.bmm(S1, S2.transpose(1, 2)), C)
out = torch.cat([C, A, torch.mul(C, A), torch.mul(C, B)], dim=2)
return out
def trilinear_for_attention(self, C, Q):
C = F.dropout(C, p=self.dropout, training=self.training)
Q = F.dropout(Q, p=self.dropout, training=self.training)
max_q_len = Q.size(-2)
max_context_len = C.size(-2)
subres0 = torch.matmul(C, self.w4C).expand([-1, -1, max_q_len])
subres1 = torch.matmul(Q, self.w4Q).transpose(1, 2).expand([-1, max_context_len, -1])
subres2 = torch.matmul(C * self.w4mlu, Q.transpose(1, 2))
res = subres0 + subres1 + subres2
res += self.bias
return res
class AnswerPointer(torch.nn.Module):
def __init__(self, block_hidden_dim, noisy_net=False):
super().__init__()
self.noisy_net = noisy_net
if self.noisy_net:
self.w_1 = NoisyLinear(block_hidden_dim * 2, 1)
self.w_1_advantage = NoisyLinear(block_hidden_dim * 2, block_hidden_dim)
self.w_2 = NoisyLinear(block_hidden_dim, 1)
else:
self.w_1 = torch.nn.Linear(block_hidden_dim * 2, 1)
self.w_1_advantage = torch.nn.Linear(block_hidden_dim * 2, block_hidden_dim)
self.w_2 = torch.nn.Linear(block_hidden_dim, 1)
def forward(self, M1, M2, mask):
X_concat = torch.cat([M1, M2], dim=-1)
X = torch.relu(self.w_1(X_concat))
X_advantage = torch.relu(self.w_1_advantage(X_concat))
X = X * mask.unsqueeze(-1)
X = X + X_advantage - X_advantage.mean(-1, keepdim=True) # combine streams
X = X * mask.unsqueeze(-1)
Y = self.w_2(X).squeeze()
Y = Y * mask
return Y
def reset_noise(self):
if self.noisy_net:
self.w_1.reset_noise()
self.w_1_advantage.reset_noise()
self.w_2.reset_noise()
def zero_noise(self):
if self.noisy_net:
self.w_1.zero_noise()
self.w_1_advantage.zero_noise()
self.w_2.zero_noise()
class Highway(torch.nn.Module):
def __init__(self, layer_num, size, dropout=0):
super().__init__()
self.n = layer_num
self.dropout = dropout
self.linear = torch.nn.ModuleList([torch.nn.Linear(size, size) for _ in range(self.n)])
self.gate = torch.nn.ModuleList([torch.nn.Linear(size, size) for _ in range(self.n)])
def forward(self, x):
#x: shape [batch_size, hidden_size, length]
for i in range(self.n):
gate = torch.sigmoid(self.gate[i](x))
nonlinear = self.linear[i](x)
nonlinear = F.dropout(nonlinear, p=self.dropout, training=self.training)
x = gate * nonlinear + (1 - gate) * x
return x
class MergeEmbeddings(torch.nn.Module):
def __init__(self, block_hidden_dim, word_emb_dim, char_emb_dim, dropout=0):
super().__init__()
self.conv2d = torch.nn.Conv2d(char_emb_dim, block_hidden_dim, kernel_size = (1, 5), padding=0, bias=True)
torch.nn.init.kaiming_normal_(self.conv2d.weight, nonlinearity='relu')
self.linear = torch.nn.Linear(word_emb_dim + block_hidden_dim, block_hidden_dim, bias=False)
self.high = Highway(2, size=block_hidden_dim, dropout=dropout)
def forward(self, word_emb, char_emb, mask=None):
char_emb = char_emb.permute(0, 3, 1, 2) # batch x emb x time x nchar
char_emb = self.conv2d(char_emb) # batch x block_hidden_dim x time x nchar-5+1
if mask is not None:
char_emb = char_emb * mask.unsqueeze(1).unsqueeze(-1)
char_emb = F.relu(char_emb) # batch x block_hidden_dim x time x nchar-5+1
char_emb, _ = torch.max(char_emb, dim=3) # batch x emb x time
char_emb = char_emb.permute(0, 2, 1) # batch x time x emb
emb = torch.cat([char_emb, word_emb], dim=2)
emb = self.linear(emb)
emb = self.high(emb)
if mask is not None:
emb = emb * mask.unsqueeze(-1)
return emb