Skip to content

Commit 96eca33

Browse files
committed
Update README.md
1 parent cccf8f5 commit 96eca33

File tree

1 file changed

+12
-12
lines changed

1 file changed

+12
-12
lines changed

README.md

Lines changed: 12 additions & 12 deletions
Original file line numberDiff line numberDiff line change
@@ -28,7 +28,7 @@ The following steps are for the widely used operating system (Ubuntu) on a virtu
2828
Note: The physical positions of variants in the GDS file (of each chromosome) should be sorted in ascending order.
2929

3030
#### Step 2: Annotate the variants using the FAVOR database through xsv software
31-
##### Script: <a href="FAVORannotator_csv/Annotate.R">**Annotate.R**</a>
31+
##### Script: <a href="FAVORannotator_csv/Annotate.R">**Annotate.R**</a>
3232
##### Input: CSV files of the variants list to be annotated, the FAVOR database information <a href="FAVORannotator_csv/FAVORdatabase_chrsplit.csv">**FAVORdatabase_chrsplit.csv**</a>,
3333
the FAVOR database, and the directory xsv software. For more details, please see the R script.
3434
##### Output: CSV files of the annotated variants list.
@@ -37,7 +37,7 @@ the FAVOR database, and the directory xsv software. For more details, please see
3737
The annotations in this file is a subset of `Anno_chrXX.csv`. <br>
3838

3939
#### Step 3: Generate the annotated GDS (aGDS) file
40-
##### Script: <a href="FAVORannotator_csv/gds2agds.R">**gds2agds.R**</a>
40+
##### Script: <a href="FAVORannotator_csv/gds2agds.R">**gds2agds.R**</a>
4141
##### Input: GDS files and the CSV files of annotated variants list (`Anno_chrXX.csv` or `Anno_chrXX_STAARpipeline.csv`). For more details, please see the R script.
4242
##### Output: aGDS files including both the genotype and annotation information.
4343

@@ -109,66 +109,66 @@ The number of output files is the summation of the column "scang_num" for the ob
109109

110110
## Summarization and visualization of association analysis results using STAARpipelineSummary
111111
### Step 0 (Optional): Select independent variants from a known variants list to be used in conditional analysis
112-
#### Script: <a href="STAARpipelineSummary_Known_Loci_Pruning.r">**STAARpipelineSummary_Known_Loci_Pruning.r**</a>
112+
#### Script: <a href="STAARpipelineSummary_Known_Loci_Pruning.r">**STAARpipelineSummary_Known_Loci_Pruning.r**</a>
113113
Perform LD pruning (stepwise selection) to select the subset of independent variants from a known variants list to be used in conditional analysis.
114114
#### Input: aGDS files, a list of known variants (CHR, POS, REF and ALT) and the STAAR null model.
115115
<a href="STAARpipelineSummary_Known_Loci_Info.r">**STAARpipelineSummary_Known_Loci_Info.r**</a> extracts the information of CHR, POS, REF and ALT from #rs. For more details, please see the R script.
116116
#### Output: a Rdata file containing a list of independent variants to be used in conditional analysis.
117117
<a href="STAARpipelineSummary_Known_Loci_Pruning_Combination.r">**STAARpipelineSummary_Known_Loci_Pruning_Combination.r**</a> combines chromosome-wide results into genome-wide.
118118

119119
### Step 1: Summarize individual (single-variant) analysis results
120-
#### Script: <a href="STAARpipelineSummary_Individual_Analysis.r">**STAARpipelineSummary_Individual_Analysis.r**</a>
120+
#### Script: <a href="STAARpipelineSummary_Individual_Analysis.r">**STAARpipelineSummary_Individual_Analysis.r**</a>
121121
Summarize single-variant analysis results and perform conditional analysis of unconditionally significant variants by adjusting a list of known variants.
122122
#### Input: aGDS files, individual analysis results generated by STAARpipeline, STAAR null model and a list of known variants. For more details, please see the R script.
123123
#### Output: The summary includes the Manhattan plot, Q-Q plot, and conditional p-values of unconditionally significant variants.
124124

125125
Note: <a href="STAARpipelineSummary_Known_Loci_Individual_Analysis_Pruning.r">**STAARpipelineSummary_Known_Loci_Individual_Analysis_Pruning.r**</a> and <a href="STAARpipelineSummary_Known_Loci_Individual_Analysis_Pruning_Combination.r">**STAARpipelineSummary_Known_Loci_Individual_Analysis_Pruning_Combination.r**</a> show an example to select independent variants from both the known variants in literature and significant single variants detected in individual analysis, which can be used for variant-set conditional analysis.
126126

127127
### Step 2.1: Summarize gene-centric coding analysis results
128-
#### Script: <a href="STAARpipelineSummary_Gene_Centric_Coding.r">**STAARpipelineSummary_Gene_Centric_Coding.r**</a>
128+
#### Script: <a href="STAARpipelineSummary_Gene_Centric_Coding.r">**STAARpipelineSummary_Gene_Centric_Coding.r**</a>
129129
Summarize gene-centric coding analysis results and perform conditional analysis of unconditionally significant coding masks by adjusting a list of known variants.
130130
#### Input: aGDS files, gene-centric coding analysis results generated by STAARpipeline, STAAR null model and a list of known variants. For more details, please see the R script.
131131
#### Output: The summary includes the Manhattan plot, Q-Q plot, and conditional p-values of unconditionally significant coding masks.
132132

133133
### Step 2.2: Summarize gene-centric noncoding analysis results
134-
#### Script: <a href="STAARpipelineSummary_Gene_Centric_Noncoding.r">**STAARpipelineSummary_Gene_Centric_Noncoding.r**</a>
134+
#### Script: <a href="STAARpipelineSummary_Gene_Centric_Noncoding.r">**STAARpipelineSummary_Gene_Centric_Noncoding.r**</a>
135135
Summarize gene-centric noncoding analysis results and perform conditional analysis of unconditionally significant noncoding masks by adjusting a list of known variants.
136136
#### Input: aGDS files, gene-centric noncoding analysis results generated by STAARpipeline, STAAR null model and a list of known variants. For more details, please see the R script.
137137
#### Output: The summary includes the Manhattan plot, Q-Q plot, and conditional p-values of unconditionally significant noncoding masks.
138138

139139
### Step 3: Summarize sliding window analysis results
140-
#### Script: <a href="STAARpipelineSummary_Sliding_Window.r">**STAARpipelineSummary_Sliding_Window.r**</a>
140+
#### Script: <a href="STAARpipelineSummary_Sliding_Window.r">**STAARpipelineSummary_Sliding_Window.r**</a>
141141
Summarize sliding window analysis results and perform conditional analysis of unconditionally significant genetic regions by adjusting a list of known variants.
142142
#### Input: aGDS files, sliding window analysis results generated by STAARpipeline, STAAR null model and a list of known variants. For details, see the R scripts.
143143
#### Output: The summary includes the Manhattan plot, Q-Q plot, and conditional p-values of unconditionally significant sliding windows.
144144

145145
### Step 4: Summarize dynamic window analysis results
146-
#### Script: <a href="STAARpipelineSummary_Dynamic_Window.r">**STAARpipelineSummary_Dynamic_Window.r**</a>
146+
#### Script: <a href="STAARpipelineSummary_Dynamic_Window.r">**STAARpipelineSummary_Dynamic_Window.r**</a>
147147
Summarize dynamic window analysis results and perform conditional analysis of unconditionally significant genetic regions by adjusting a list of known variants.
148148
#### Input: aGDS files, dynamic window analysis results generated by STAARpipeline, STAAR null model and a list of known variants. For more details, please see the R script.
149149
#### Output: The summary includes the Manhattan plot, Q-Q plot, and conditional p-values of unconditionally significant dynamic windows.
150150

151151
### Step 5.1: Functionally annotate a list of variants
152-
#### Script: <a href="STAARpipelineSummary_Individual_Analysis_Annotation.r">**STAARpipelineSummary_Individual_Analysis_Annotation.r**</a>
152+
#### Script: <a href="STAARpipelineSummary_Individual_Analysis_Annotation.r">**STAARpipelineSummary_Individual_Analysis_Annotation.r**</a>
153153
Functionally annotate a list of variants.
154154
#### Input: aGDS files and a list of variants.
155155
The list of variants could be the individual analysis results generated by STAARpipelineSummary.
156156
#### Output: a Rdata file containing the input variants together with the corresponding functional annotations.
157157

158158
### Step 5.2: Functionally annotate rare variants in coding masks
159-
#### Script: <a href="STAARpipelineSummary_Gene_Centric_Coding_Annotation.r">**STAARpipelineSummary_Gene_Centric_Coding_Annotation.r**</a>
159+
#### Script: <a href="STAARpipelineSummary_Gene_Centric_Coding_Annotation.r">**STAARpipelineSummary_Gene_Centric_Coding_Annotation.r**</a>
160160
Functionally annotate rare variants of each of the input coding masks.
161161
#### Input: aGDS files and coding masks (chr, gene name and functional category).
162162
#### Output: For each input coding mask, the script outputs a Rdata file containing the rare variants and the corresponding functional annotations.
163163

164164
### Step 5.3: Functionally annotate rare variants in noncoding masks
165-
#### Script: <a href="STAARpipelineSummary_Gene_Centric_Noncoding_Annotation.r">**STAARpipelineSummary_Gene_Centric_Noncoding_Annotation.r**</a>
165+
#### Script: <a href="STAARpipelineSummary_Gene_Centric_Noncoding_Annotation.r">**STAARpipelineSummary_Gene_Centric_Noncoding_Annotation.r**</a>
166166
Functionally annotate rare variants of each of the input noncoding masks.
167167
#### Input: aGDS files and noncoding masks (chr, gene name and functional category).
168168
#### Output: For each input noncoding mask, the script outputs a Rdata file containing the rare variants and the corresponding functional annotations.
169169

170170
### Step 5.4: Functionally annotate rare variants in genetic regions
171-
#### Script: <a href="STAARpipelineSummary_Genetic_Region_Annotation.r">**STAARpipelineSummary_Genetic_Region_Annotation.r**</a>
171+
#### Script: <a href="STAARpipelineSummary_Genetic_Region_Annotation.r">**STAARpipelineSummary_Genetic_Region_Annotation.r**</a>
172172
Functionally annotate rare variants of each of the input genetic regions.
173173
#### Input: aGDS files and noncoding masks (chr, start position and end position).
174174
#### Output: For each input genetic region, the script outputs a Rdata file containing the rare variants and the corresponding functional annotations.

0 commit comments

Comments
 (0)