Skip to content

Commit

Permalink
Update README.md
Browse files Browse the repository at this point in the history
  • Loading branch information
xihaoli committed Feb 20, 2024
1 parent cccf8f5 commit 96eca33
Showing 1 changed file with 12 additions and 12 deletions.
24 changes: 12 additions & 12 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -28,7 +28,7 @@ The following steps are for the widely used operating system (Ubuntu) on a virtu
Note: The physical positions of variants in the GDS file (of each chromosome) should be sorted in ascending order.

#### Step 2: Annotate the variants using the FAVOR database through xsv software
##### Script: <a href="FAVORannotator_csv/Annotate.R">**Annotate.R**</a>
##### Script: <a href="FAVORannotator_csv/Annotate.R">**Annotate.R**</a>
##### Input: CSV files of the variants list to be annotated, the FAVOR database information <a href="FAVORannotator_csv/FAVORdatabase_chrsplit.csv">**FAVORdatabase_chrsplit.csv**</a>,
the FAVOR database, and the directory xsv software. For more details, please see the R script.
##### Output: CSV files of the annotated variants list.
Expand All @@ -37,7 +37,7 @@ the FAVOR database, and the directory xsv software. For more details, please see
The annotations in this file is a subset of `Anno_chrXX.csv`. <br>

#### Step 3: Generate the annotated GDS (aGDS) file
##### Script: <a href="FAVORannotator_csv/gds2agds.R">**gds2agds.R**</a>
##### Script: <a href="FAVORannotator_csv/gds2agds.R">**gds2agds.R**</a>
##### Input: GDS files and the CSV files of annotated variants list (`Anno_chrXX.csv` or `Anno_chrXX_STAARpipeline.csv`). For more details, please see the R script.
##### Output: aGDS files including both the genotype and annotation information.

Expand Down Expand Up @@ -109,66 +109,66 @@ The number of output files is the summation of the column "scang_num" for the ob

## Summarization and visualization of association analysis results using STAARpipelineSummary
### Step 0 (Optional): Select independent variants from a known variants list to be used in conditional analysis
#### Script: <a href="STAARpipelineSummary_Known_Loci_Pruning.r">**STAARpipelineSummary_Known_Loci_Pruning.r**</a>
#### Script: <a href="STAARpipelineSummary_Known_Loci_Pruning.r">**STAARpipelineSummary_Known_Loci_Pruning.r**</a>
Perform LD pruning (stepwise selection) to select the subset of independent variants from a known variants list to be used in conditional analysis.
#### Input: aGDS files, a list of known variants (CHR, POS, REF and ALT) and the STAAR null model.
<a href="STAARpipelineSummary_Known_Loci_Info.r">**STAARpipelineSummary_Known_Loci_Info.r**</a> extracts the information of CHR, POS, REF and ALT from #rs. For more details, please see the R script.
#### Output: a Rdata file containing a list of independent variants to be used in conditional analysis.
<a href="STAARpipelineSummary_Known_Loci_Pruning_Combination.r">**STAARpipelineSummary_Known_Loci_Pruning_Combination.r**</a> combines chromosome-wide results into genome-wide.

### Step 1: Summarize individual (single-variant) analysis results
#### Script: <a href="STAARpipelineSummary_Individual_Analysis.r">**STAARpipelineSummary_Individual_Analysis.r**</a>
#### Script: <a href="STAARpipelineSummary_Individual_Analysis.r">**STAARpipelineSummary_Individual_Analysis.r**</a>
Summarize single-variant analysis results and perform conditional analysis of unconditionally significant variants by adjusting a list of known variants.
#### Input: aGDS files, individual analysis results generated by STAARpipeline, STAAR null model and a list of known variants. For more details, please see the R script.
#### Output: The summary includes the Manhattan plot, Q-Q plot, and conditional p-values of unconditionally significant variants.

Note: <a href="STAARpipelineSummary_Known_Loci_Individual_Analysis_Pruning.r">**STAARpipelineSummary_Known_Loci_Individual_Analysis_Pruning.r**</a> and <a href="STAARpipelineSummary_Known_Loci_Individual_Analysis_Pruning_Combination.r">**STAARpipelineSummary_Known_Loci_Individual_Analysis_Pruning_Combination.r**</a> show an example to select independent variants from both the known variants in literature and significant single variants detected in individual analysis, which can be used for variant-set conditional analysis.

### Step 2.1: Summarize gene-centric coding analysis results
#### Script: <a href="STAARpipelineSummary_Gene_Centric_Coding.r">**STAARpipelineSummary_Gene_Centric_Coding.r**</a>
#### Script: <a href="STAARpipelineSummary_Gene_Centric_Coding.r">**STAARpipelineSummary_Gene_Centric_Coding.r**</a>
Summarize gene-centric coding analysis results and perform conditional analysis of unconditionally significant coding masks by adjusting a list of known variants.
#### Input: aGDS files, gene-centric coding analysis results generated by STAARpipeline, STAAR null model and a list of known variants. For more details, please see the R script.
#### Output: The summary includes the Manhattan plot, Q-Q plot, and conditional p-values of unconditionally significant coding masks.

### Step 2.2: Summarize gene-centric noncoding analysis results
#### Script: <a href="STAARpipelineSummary_Gene_Centric_Noncoding.r">**STAARpipelineSummary_Gene_Centric_Noncoding.r**</a>
#### Script: <a href="STAARpipelineSummary_Gene_Centric_Noncoding.r">**STAARpipelineSummary_Gene_Centric_Noncoding.r**</a>
Summarize gene-centric noncoding analysis results and perform conditional analysis of unconditionally significant noncoding masks by adjusting a list of known variants.
#### Input: aGDS files, gene-centric noncoding analysis results generated by STAARpipeline, STAAR null model and a list of known variants. For more details, please see the R script.
#### Output: The summary includes the Manhattan plot, Q-Q plot, and conditional p-values of unconditionally significant noncoding masks.

### Step 3: Summarize sliding window analysis results
#### Script: <a href="STAARpipelineSummary_Sliding_Window.r">**STAARpipelineSummary_Sliding_Window.r**</a>
#### Script: <a href="STAARpipelineSummary_Sliding_Window.r">**STAARpipelineSummary_Sliding_Window.r**</a>
Summarize sliding window analysis results and perform conditional analysis of unconditionally significant genetic regions by adjusting a list of known variants.
#### Input: aGDS files, sliding window analysis results generated by STAARpipeline, STAAR null model and a list of known variants. For details, see the R scripts.
#### Output: The summary includes the Manhattan plot, Q-Q plot, and conditional p-values of unconditionally significant sliding windows.

### Step 4: Summarize dynamic window analysis results
#### Script: <a href="STAARpipelineSummary_Dynamic_Window.r">**STAARpipelineSummary_Dynamic_Window.r**</a>
#### Script: <a href="STAARpipelineSummary_Dynamic_Window.r">**STAARpipelineSummary_Dynamic_Window.r**</a>
Summarize dynamic window analysis results and perform conditional analysis of unconditionally significant genetic regions by adjusting a list of known variants.
#### Input: aGDS files, dynamic window analysis results generated by STAARpipeline, STAAR null model and a list of known variants. For more details, please see the R script.
#### Output: The summary includes the Manhattan plot, Q-Q plot, and conditional p-values of unconditionally significant dynamic windows.

### Step 5.1: Functionally annotate a list of variants
#### Script: <a href="STAARpipelineSummary_Individual_Analysis_Annotation.r">**STAARpipelineSummary_Individual_Analysis_Annotation.r**</a>
#### Script: <a href="STAARpipelineSummary_Individual_Analysis_Annotation.r">**STAARpipelineSummary_Individual_Analysis_Annotation.r**</a>
Functionally annotate a list of variants.
#### Input: aGDS files and a list of variants.
The list of variants could be the individual analysis results generated by STAARpipelineSummary.
#### Output: a Rdata file containing the input variants together with the corresponding functional annotations.

### Step 5.2: Functionally annotate rare variants in coding masks
#### Script: <a href="STAARpipelineSummary_Gene_Centric_Coding_Annotation.r">**STAARpipelineSummary_Gene_Centric_Coding_Annotation.r**</a>
#### Script: <a href="STAARpipelineSummary_Gene_Centric_Coding_Annotation.r">**STAARpipelineSummary_Gene_Centric_Coding_Annotation.r**</a>
Functionally annotate rare variants of each of the input coding masks.
#### Input: aGDS files and coding masks (chr, gene name and functional category).
#### Output: For each input coding mask, the script outputs a Rdata file containing the rare variants and the corresponding functional annotations.

### Step 5.3: Functionally annotate rare variants in noncoding masks
#### Script: <a href="STAARpipelineSummary_Gene_Centric_Noncoding_Annotation.r">**STAARpipelineSummary_Gene_Centric_Noncoding_Annotation.r**</a>
#### Script: <a href="STAARpipelineSummary_Gene_Centric_Noncoding_Annotation.r">**STAARpipelineSummary_Gene_Centric_Noncoding_Annotation.r**</a>
Functionally annotate rare variants of each of the input noncoding masks.
#### Input: aGDS files and noncoding masks (chr, gene name and functional category).
#### Output: For each input noncoding mask, the script outputs a Rdata file containing the rare variants and the corresponding functional annotations.

### Step 5.4: Functionally annotate rare variants in genetic regions
#### Script: <a href="STAARpipelineSummary_Genetic_Region_Annotation.r">**STAARpipelineSummary_Genetic_Region_Annotation.r**</a>
#### Script: <a href="STAARpipelineSummary_Genetic_Region_Annotation.r">**STAARpipelineSummary_Genetic_Region_Annotation.r**</a>
Functionally annotate rare variants of each of the input genetic regions.
#### Input: aGDS files and noncoding masks (chr, start position and end position).
#### Output: For each input genetic region, the script outputs a Rdata file containing the rare variants and the corresponding functional annotations.
Expand Down

0 comments on commit 96eca33

Please sign in to comment.