-
Notifications
You must be signed in to change notification settings - Fork 8
/
mean_ap_visualize.py
510 lines (449 loc) · 19.5 KB
/
mean_ap_visualize.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
from multiprocessing import Pool
import mmcv
import numpy as np
from mmcv.utils import print_log
import matplotlib.pyplot as plt
import matplotlib
from terminaltables import AsciiTable
from .bbox_overlaps import bbox_overlaps
from .class_names import get_classes
matplotlib.use('Agg')
def average_precision(recalls, precisions, mode='area'):
"""Calculate average precision (for single or multiple scales).
Args:
recalls (ndarray): shape (num_scales, num_dets) or (num_dets, )
precisions (ndarray): shape (num_scales, num_dets) or (num_dets, )
mode (str): 'area' or '11points', 'area' means calculating the area
under precision-recall curve, '11points' means calculating
the average precision of recalls at [0, 0.1, ..., 1]
Returns:
float or ndarray: calculated average precision
"""
no_scale = False
if recalls.ndim == 1:
no_scale = True
recalls = recalls[np.newaxis, :]
precisions = precisions[np.newaxis, :]
assert recalls.shape == precisions.shape and recalls.ndim == 2
num_scales = recalls.shape[0]
ap = np.zeros(num_scales, dtype=np.float32)
if mode == 'area':
zeros = np.zeros((num_scales, 1), dtype=recalls.dtype)
ones = np.ones((num_scales, 1), dtype=recalls.dtype)
mrec = np.hstack((zeros, recalls, ones))
mpre = np.hstack((zeros, precisions, zeros))
for i in range(mpre.shape[1] - 1, 0, -1):
mpre[:, i - 1] = np.maximum(mpre[:, i - 1], mpre[:, i])
for i in range(num_scales):
ind = np.where(mrec[i, 1:] != mrec[i, :-1])[0]
ap[i] = np.sum(
(mrec[i, ind + 1] - mrec[i, ind]) * mpre[i, ind + 1])
elif mode == '11points':
for i in range(num_scales):
for thr in np.arange(0, 1 + 1e-3, 0.1):
precs = precisions[i, recalls[i, :] >= thr]
prec = precs.max() if precs.size > 0 else 0
ap[i] += prec
ap /= 11
else:
raise ValueError(
'Unrecognized mode, only "area" and "11points" are supported')
if no_scale:
ap = ap[0]
return ap
def tpfp_imagenet(det_bboxes,
gt_bboxes,
gt_bboxes_ignore=None,
default_iou_thr=0.5,
area_ranges=None):
"""Check if detected bboxes are true positive or false positive.
Args:
det_bbox (ndarray): Detected bboxes of this image, of shape (m, 5).
gt_bboxes (ndarray): GT bboxes of this image, of shape (n, 4).
gt_bboxes_ignore (ndarray): Ignored gt bboxes of this image,
of shape (k, 4). Default: None
default_iou_thr (float): IoU threshold to be considered as matched for
medium and large bboxes (small ones have special rules).
Default: 0.5.
area_ranges (list[tuple] | None): Range of bbox areas to be evaluated,
in the format [(min1, max1), (min2, max2), ...]. Default: None.
Returns:
tuple[np.ndarray]: (tp, fp) whose elements are 0 and 1. The shape of
each array is (num_scales, m).
"""
# an indicator of ignored gts
gt_ignore_inds = np.concatenate(
(np.zeros(gt_bboxes.shape[0], dtype=np.bool),
np.ones(gt_bboxes_ignore.shape[0], dtype=np.bool)))
# stack gt_bboxes and gt_bboxes_ignore for convenience
gt_bboxes = np.vstack((gt_bboxes, gt_bboxes_ignore))
num_dets = det_bboxes.shape[0]
num_gts = gt_bboxes.shape[0]
if area_ranges is None:
area_ranges = [(None, None)]
num_scales = len(area_ranges)
# tp and fp are of shape (num_scales, num_gts), each row is tp or fp
# of a certain scale.
tp = np.zeros((num_scales, num_dets), dtype=np.float32)
fp = np.zeros((num_scales, num_dets), dtype=np.float32)
if gt_bboxes.shape[0] == 0:
if area_ranges == [(None, None)]:
fp[...] = 1
else:
det_areas = (det_bboxes[:, 2] - det_bboxes[:, 0]) * (
det_bboxes[:, 3] - det_bboxes[:, 1])
for i, (min_area, max_area) in enumerate(area_ranges):
fp[i, (det_areas >= min_area) & (det_areas < max_area)] = 1
return tp, fp
ious = bbox_overlaps(det_bboxes, gt_bboxes - 1)
gt_w = gt_bboxes[:, 2] - gt_bboxes[:, 0]
gt_h = gt_bboxes[:, 3] - gt_bboxes[:, 1]
iou_thrs = np.minimum((gt_w * gt_h) / ((gt_w + 10.0) * (gt_h + 10.0)),
default_iou_thr)
# sort all detections by scores in descending order
sort_inds = np.argsort(-det_bboxes[:, -1])
for k, (min_area, max_area) in enumerate(area_ranges):
gt_covered = np.zeros(num_gts, dtype=bool)
# if no area range is specified, gt_area_ignore is all False
if min_area is None:
gt_area_ignore = np.zeros_like(gt_ignore_inds, dtype=bool)
else:
gt_areas = gt_w * gt_h
gt_area_ignore = (gt_areas < min_area) | (gt_areas >= max_area)
for i in sort_inds:
max_iou = -1
matched_gt = -1
# find best overlapped available gt
for j in range(num_gts):
# different from PASCAL VOC: allow finding other gts if the
# best overlaped ones are already matched by other det bboxes
if gt_covered[j]:
continue
elif ious[i, j] >= iou_thrs[j] and ious[i, j] > max_iou:
max_iou = ious[i, j]
matched_gt = j
# there are 4 cases for a det bbox:
# 1. it matches a gt, tp = 1, fp = 0
# 2. it matches an ignored gt, tp = 0, fp = 0
# 3. it matches no gt and within area range, tp = 0, fp = 1
# 4. it matches no gt but is beyond area range, tp = 0, fp = 0
if matched_gt >= 0:
gt_covered[matched_gt] = 1
if not (gt_ignore_inds[matched_gt]
or gt_area_ignore[matched_gt]):
tp[k, i] = 1
elif min_area is None:
fp[k, i] = 1
else:
bbox = det_bboxes[i, :4]
area = (bbox[2] - bbox[0]) * (bbox[3] - bbox[1])
if area >= min_area and area < max_area:
fp[k, i] = 1
return tp, fp
def tpfp_default(det_bboxes,
gt_bboxes,
gt_bboxes_ignore=None,
iou_thr=0.5,
area_ranges=None):
"""Check if detected bboxes are true positive or false positive.
Args:
det_bbox (ndarray): Detected bboxes of this image, of shape (m, 5).
gt_bboxes (ndarray): GT bboxes of this image, of shape (n, 4).
gt_bboxes_ignore (ndarray): Ignored gt bboxes of this image,
of shape (k, 4). Default: None
iou_thr (float): IoU threshold to be considered as matched.
Default: 0.5.
area_ranges (list[tuple] | None): Range of bbox areas to be evaluated,
in the format [(min1, max1), (min2, max2), ...]. Default: None.
Returns:
tuple[np.ndarray]: (tp, fp) whose elements are 0 and 1. The shape of
each array is (num_scales, m).
"""
# an indicator of ignored gts
gt_ignore_inds = np.concatenate(
(np.zeros(gt_bboxes.shape[0], dtype=np.bool),
np.ones(gt_bboxes_ignore.shape[0], dtype=np.bool)))
# stack gt_bboxes and gt_bboxes_ignore for convenience
gt_bboxes = np.vstack((gt_bboxes, gt_bboxes_ignore))
num_dets = det_bboxes.shape[0]
num_gts = gt_bboxes.shape[0]
if area_ranges is None:
area_ranges = [(None, None)]
num_scales = len(area_ranges)
# tp and fp are of shape (num_scales, num_gts), each row is tp or fp of
# a certain scale
tp = np.zeros((num_scales, num_dets), dtype=np.float32)
fp = np.zeros((num_scales, num_dets), dtype=np.float32)
# if there is no gt bboxes in this image, then all det bboxes
# within area range are false positives
if gt_bboxes.shape[0] == 0:
if area_ranges == [(None, None)]:
fp[...] = 1
else:
det_areas = (det_bboxes[:, 2] - det_bboxes[:, 0]) * (
det_bboxes[:, 3] - det_bboxes[:, 1])
for i, (min_area, max_area) in enumerate(area_ranges):
fp[i, (det_areas >= min_area) & (det_areas < max_area)] = 1
return tp, fp
ious = bbox_overlaps(det_bboxes, gt_bboxes)
# for each det, the max iou with all gts
ious_max = ious.max(axis=1)
# for each det, which gt overlaps most with it
ious_argmax = ious.argmax(axis=1)
# sort all dets in descending order by scores
sort_inds = np.argsort(-det_bboxes[:, -1])
for k, (min_area, max_area) in enumerate(area_ranges):
gt_covered = np.zeros(num_gts, dtype=bool)
# if no area range is specified, gt_area_ignore is all False
if min_area is None:
gt_area_ignore = np.zeros_like(gt_ignore_inds, dtype=bool)
else:
gt_areas = (gt_bboxes[:, 2] - gt_bboxes[:, 0]) * (
gt_bboxes[:, 3] - gt_bboxes[:, 1])
gt_area_ignore = (gt_areas < min_area) | (gt_areas >= max_area)
for i in sort_inds:
if ious_max[i] >= iou_thr:
matched_gt = ious_argmax[i]
if not (gt_ignore_inds[matched_gt]
or gt_area_ignore[matched_gt]):
if not gt_covered[matched_gt]:
gt_covered[matched_gt] = True
tp[k, i] = 1
else:
fp[k, i] = 1
# otherwise ignore this detected bbox, tp = 0, fp = 0
elif min_area is None:
fp[k, i] = 1
else:
bbox = det_bboxes[i, :4]
area = (bbox[2] - bbox[0]) * (bbox[3] - bbox[1])
if area >= min_area and area < max_area:
fp[k, i] = 1
return tp, fp
def get_cls_results(det_results, annotations, class_id):
"""Get det results and gt information of a certain class.
Args:
det_results (list[list]): Same as `eval_map()`.
annotations (list[dict]): Same as `eval_map()`.
class_id (int): ID of a specific class.
Returns:
tuple[list[np.ndarray]]: detected bboxes, gt bboxes, ignored gt bboxes
"""
cls_dets = [img_res[class_id] for img_res in det_results]
cls_gts = []
cls_gts_ignore = []
for ann in annotations:
gt_inds = ann['labels'] == class_id
cls_gts.append(ann['bboxes'][gt_inds, :])
if ann.get('labels_ignore', None) is not None:
ignore_inds = ann['labels_ignore'] == class_id
cls_gts_ignore.append(ann['bboxes_ignore'][ignore_inds, :])
else:
cls_gts_ignore.append(np.empty((0, 4), dtype=np.float32))
return cls_dets, cls_gts, cls_gts_ignore
def eval_map(det_results,
annotations,
scale_ranges=None,
iou_thr=0.5,
dataset=None,
logger=None,
nproc=4):
"""Evaluate mAP of a dataset.
Args:
det_results (list[list]): [[cls1_det, cls2_det, ...], ...].
The outer list indicates images, and the inner list indicates
per-class detected bboxes.
annotations (list[dict]): Ground truth annotations where each item of
the list indicates an image. Keys of annotations are:
- `bboxes`: numpy array of shape (n, 4)
- `labels`: numpy array of shape (n, )
- `bboxes_ignore` (optional): numpy array of shape (k, 4)
- `labels_ignore` (optional): numpy array of shape (k, )
scale_ranges (list[tuple] | None): Range of scales to be evaluated,
in the format [(min1, max1), (min2, max2), ...]. A range of
(32, 64) means the area range between (32**2, 64**2).
Default: None.
iou_thr (float): IoU threshold to be considered as matched.
Default: 0.5.
dataset (list[str] | str | None): Dataset name or dataset classes,
there are minor differences in metrics for different datsets, e.g.
"voc07", "imagenet_det", etc. Default: None.
logger (logging.Logger | str | None): The way to print the mAP
summary. See `mmdet.utils.print_log()` for details. Default: None.
nproc (int): Processes used for computing TP and FP.
Default: 4.
Returns:
tuple: (mAP, [dict, dict, ...])
"""
assert len(det_results) == len(annotations)
num_imgs = len(det_results)
num_scales = len(scale_ranges) if scale_ranges is not None else 1
num_classes = len(det_results[0]) # positive class num
area_ranges = ([(rg[0]**2, rg[1]**2) for rg in scale_ranges]
if scale_ranges is not None else None)
pool = Pool(nproc)
eval_results = []
f_measure_list = []
recall_list = []
precision_list = []
ap_list = []
for i in range(num_classes):
# get gt and det bboxes of this class
cls_dets, cls_gts, cls_gts_ignore = get_cls_results(
det_results, annotations, i)
# choose proper function according to datasets to compute tp and fp
if dataset in ['det', 'vid']:
tpfp_func = tpfp_imagenet
else:
tpfp_func = tpfp_default
# compute tp and fp for each image with multiple processes
tpfp = pool.starmap(
tpfp_func,
zip(cls_dets, cls_gts, cls_gts_ignore,
[iou_thr for _ in range(num_imgs)],
[area_ranges for _ in range(num_imgs)]))
tp, fp = tuple(zip(*tpfp))
# calculate gt number of each scale
# ignored gts or gts beyond the specific scale are not counted
num_gts = np.zeros(num_scales, dtype=int)
for j, bbox in enumerate(cls_gts):
if area_ranges is None:
num_gts[0] += bbox.shape[0]
else:
gt_areas = (bbox[:, 2] - bbox[:, 0]) * (
bbox[:, 3] - bbox[:, 1])
for k, (min_area, max_area) in enumerate(area_ranges):
num_gts[k] += np.sum((gt_areas >= min_area)
& (gt_areas < max_area))
# sort all det bboxes by score, also sort tp and fp
cls_dets = np.vstack(cls_dets)
num_dets = cls_dets.shape[0]
sort_inds = np.argsort(-cls_dets[:, -1])
tp = np.hstack(tp)[:, sort_inds]
fp = np.hstack(fp)[:, sort_inds]
# calculate recall and precision with tp and fp
tp = np.cumsum(tp, axis=1)
fp = np.cumsum(fp, axis=1)
eps = np.finfo(np.float32).eps
recalls = tp / np.maximum(num_gts[:, np.newaxis], eps)
precisions = tp / np.maximum((tp + fp), eps)
# calculate AP
if scale_ranges is None:
recalls = recalls[0, :]
precisions = precisions[0, :]
num_gts = num_gts.item()
mode = 'area' if dataset != 'voc07' else '11points'
ap = average_precision(recalls, precisions, mode)
#------------collect data--------------#
recall_list.append(recalls)
precision_list.append(precisions)
ap_list.append(ap)
eval_results.append({
'num_gts': num_gts,
'num_dets': num_dets,
'recall': recalls,
'precision': precisions,
'ap': ap
})
#-----------F_measure calculation--------------#
top = recalls * precisions
down = recalls + precisions
f_measure = np.mean(2*(top/down))
f_measure_list.append(f_measure)
pool.close()
label_names = get_classes(dataset)
#------------plot PR / F-measure-----------#
plt.figure(figsize=(6, 10))
#------------plot curve--------------------#
for i in range(num_classes):
plt.subplots_adjust(hspace=0.3)
plt.subplot(211)
plt.plot(recall_list[i], precision_list[i], linewidth=2, \
label='({}, (AP = {:.4f}))'.format(label_names[i], ap_list[i]))
plt.title('Precision-Recall')
plt.xlabel('Recall')
plt.ylabel('Precision')
plt.axis([0, 1, 0, 1])
plt.legend()
plt.subplot(212)
plt.title('F-measure')
plt.bar(label_names[i], f_measure_list[i])
for a, b in zip(label_names, f_measure_list):
plt.text(a, b, '%.4f' % b, color='black', fontweight='bold')
plt.savefig('./mmdetection/PR_Curve_each_class.png')
if scale_ranges is not None:
# shape (num_classes, num_scales)
all_ap = np.vstack([cls_result['ap'] for cls_result in eval_results])
all_num_gts = np.vstack(
[cls_result['num_gts'] for cls_result in eval_results])
mean_ap = []
for i in range(num_scales):
if np.any(all_num_gts[:, i] > 0):
mean_ap.append(all_ap[all_num_gts[:, i] > 0, i].mean())
else:
mean_ap.append(0.0)
else:
aps = []
for cls_result in eval_results:
if cls_result['num_gts'] > 0:
aps.append(cls_result['ap'])
mean_ap = np.array(aps).mean().item() if aps else 0.0
print_map_summary(
mean_ap, eval_results, dataset, area_ranges, logger=logger)
return mean_ap, eval_results
def print_map_summary(mean_ap,
results,
dataset=None,
scale_ranges=None,
logger=None):
"""Print mAP and results of each class.
A table will be printed to show the gts/dets/recall/AP of each class and
the mAP.
Args:
mean_ap (float): Calculated from `eval_map()`.
results (list[dict]): Calculated from `eval_map()`.
dataset (list[str] | str | None): Dataset name or dataset classes.
scale_ranges (list[tuple] | None): Range of scales to be evaluated.
logger (logging.Logger | str | None): The way to print the mAP
summary. See `mmdet.utils.print_log()` for details. Default: None.
"""
if logger == 'silent':
return
if isinstance(results[0]['ap'], np.ndarray):
num_scales = len(results[0]['ap'])
else:
num_scales = 1
if scale_ranges is not None:
assert len(scale_ranges) == num_scales
num_classes = len(results)
recalls = np.zeros((num_scales, num_classes), dtype=np.float32)
aps = np.zeros((num_scales, num_classes), dtype=np.float32)
num_gts = np.zeros((num_scales, num_classes), dtype=int)
for i, cls_result in enumerate(results):
if cls_result['recall'].size > 0:
recalls[:, i] = np.array(cls_result['recall'], ndmin=2)[:, -1]
aps[:, i] = cls_result['ap']
num_gts[:, i] = cls_result['num_gts']
if dataset is None:
label_names = [str(i) for i in range(num_classes)]
elif mmcv.is_str(dataset):
label_names = get_classes(dataset)
else:
label_names = dataset
if not isinstance(mean_ap, list):
mean_ap = [mean_ap]
header = ['class', 'gts', 'dets', 'recall', 'ap']
for i in range(num_scales):
if scale_ranges is not None:
print_log(f'Scale range {scale_ranges[i]}', logger=logger)
table_data = [header]
for j in range(num_classes):
row_data = [
label_names[j], num_gts[i, j], results[j]['num_dets'],
f'{recalls[i, j]:.3f}', f'{aps[i, j]:.3f}'
]
table_data.append(row_data)
table_data.append(['mAP', '', '', '', f'{mean_ap[i]:.3f}'])
table = AsciiTable(table_data)
table.inner_footing_row_border = True
print_log('\n' + table.table, logger=logger)