-
Notifications
You must be signed in to change notification settings - Fork 67
/
zgeru.c
203 lines (161 loc) · 5.16 KB
/
zgeru.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
/* -- translated by f2c (version 19940927).
You must link the resulting object file with the libraries:
-lf2c -lm (in that order)
*/
#include "f2c.h"
/* Subroutine */ int zgeru_(integer *m, integer *n, doublecomplex *alpha,
doublecomplex *x, integer *incx, doublecomplex *y, integer *incy,
doublecomplex *a, integer *lda)
{
/* System generated locals */
integer a_dim1, a_offset, i__1, i__2, i__3, i__4, i__5;
doublecomplex z__1, z__2;
/* Local variables */
static integer info;
static doublecomplex temp;
static integer i, j, ix, jy, kx;
extern /* Subroutine */ int input_error_dist(char *, integer *);
/* Purpose
=======
ZGERU performs the rank 1 operation
A := alpha*x*y' + A,
where alpha is a scalar, x is an m element vector, y is an n element
vector and A is an m by n matrix.
Parameters
==========
M - INTEGER.
On entry, M specifies the number of rows of the matrix A.
M must be at least zero.
Unchanged on exit.
N - INTEGER.
On entry, N specifies the number of columns of the matrix A.
N must be at least zero.
Unchanged on exit.
ALPHA - COMPLEX*16 .
On entry, ALPHA specifies the scalar alpha.
Unchanged on exit.
X - COMPLEX*16 array of dimension at least
( 1 + ( m - 1 )*abs( INCX ) ).
Before entry, the incremented array X must contain the m
element vector x.
Unchanged on exit.
INCX - INTEGER.
On entry, INCX specifies the increment for the elements of
X. INCX must not be zero.
Unchanged on exit.
Y - COMPLEX*16 array of dimension at least
( 1 + ( n - 1 )*abs( INCY ) ).
Before entry, the incremented array Y must contain the n
element vector y.
Unchanged on exit.
INCY - INTEGER.
On entry, INCY specifies the increment for the elements of
Y. INCY must not be zero.
Unchanged on exit.
A - COMPLEX*16 array of DIMENSION ( LDA, n ).
Before entry, the leading m by n part of the array A must
contain the matrix of coefficients. On exit, A is
overwritten by the updated matrix.
LDA - INTEGER.
On entry, LDA specifies the first dimension of A as declared
in the calling (sub) program. LDA must be at least
max( 1, m ).
Unchanged on exit.
Level 2 Blas routine.
-- Written on 22-October-1986.
Jack Dongarra, Argonne National Lab.
Jeremy Du Croz, Nag Central Office.
Sven Hammarling, Nag Central Office.
Richard Hanson, Sandia National Labs.
Test the input parameters.
Parameter adjustments
Function Body */
#define X(I) x[(I)-1]
#define Y(I) y[(I)-1]
#define A(I,J) a[(I)-1 + ((J)-1)* ( *lda)]
info = 0;
if (*m < 0) {
info = 1;
} else if (*n < 0) {
info = 2;
} else if (*incx == 0) {
info = 5;
} else if (*incy == 0) {
info = 7;
} else if (*lda < max(1,*m)) {
info = 9;
}
if (info != 0) {
input_error_dist("ZGERU ", &info);
return 0;
}
/* Quick return if possible. */
if (*m == 0 || *n == 0 || alpha->r == 0. && alpha->i == 0.) {
return 0;
}
/* Start the operations. In this version the elements of A are
accessed sequentially with one pass through A. */
if (*incy > 0) {
jy = 1;
} else {
jy = 1 - (*n - 1) * *incy;
}
if (*incx == 1) {
i__1 = *n;
for (j = 1; j <= *n; ++j) {
i__2 = jy;
if (Y(jy).r != 0. || Y(jy).i != 0.) {
i__2 = jy;
z__1.r = alpha->r * Y(jy).r - alpha->i * Y(jy).i, z__1.i =
alpha->r * Y(jy).i + alpha->i * Y(jy).r;
temp.r = z__1.r, temp.i = z__1.i;
i__2 = *m;
for (i = 1; i <= *m; ++i) {
i__3 = i + j * a_dim1;
i__4 = i + j * a_dim1;
i__5 = i;
z__2.r = X(i).r * temp.r - X(i).i * temp.i, z__2.i =
X(i).r * temp.i + X(i).i * temp.r;
z__1.r = A(i,j).r + z__2.r, z__1.i = A(i,j).i + z__2.i;
A(i,j).r = z__1.r, A(i,j).i = z__1.i;
/* L10: */
}
}
jy += *incy;
/* L20: */
}
} else {
if (*incx > 0) {
kx = 1;
} else {
kx = 1 - (*m - 1) * *incx;
}
i__1 = *n;
for (j = 1; j <= *n; ++j) {
i__2 = jy;
if (Y(jy).r != 0. || Y(jy).i != 0.) {
i__2 = jy;
z__1.r = alpha->r * Y(jy).r - alpha->i * Y(jy).i, z__1.i =
alpha->r * Y(jy).i + alpha->i * Y(jy).r;
temp.r = z__1.r, temp.i = z__1.i;
ix = kx;
i__2 = *m;
for (i = 1; i <= *m; ++i) {
i__3 = i + j * a_dim1;
i__4 = i + j * a_dim1;
i__5 = ix;
z__2.r = X(ix).r * temp.r - X(ix).i * temp.i, z__2.i =
X(ix).r * temp.i + X(ix).i * temp.r;
z__1.r = A(i,j).r + z__2.r, z__1.i = A(i,j).i + z__2.i;
A(i,j).r = z__1.r, A(i,j).i = z__1.i;
ix += *incx;
/* L30: */
}
}
jy += *incy;
/* L40: */
}
}
return 0;
/* End of ZGERU . */
} /* zgeru_ */