-
Notifications
You must be signed in to change notification settings - Fork 67
/
dtrsv.c
337 lines (275 loc) · 7.6 KB
/
dtrsv.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
/* -- translated by f2c (version 19940927).
You must link the resulting object file with the libraries:
-lf2c -lm (in that order)
*/
#include <string.h>
#include "f2c.h"
/* Subroutine */ int dtrsv_(char *uplo, char *trans, char *diag, integer *n,
doublereal *a, integer *lda, doublereal *x, integer *incx)
{
/* System generated locals */
integer a_dim1, a_offset, i__1, i__2;
/* Local variables */
static integer info;
static doublereal temp;
static integer i, j;
static integer ix, jx, kx;
extern /* Subroutine */ int input_error_dist(char *, integer *);
static logical nounit;
/* Purpose
=======
DTRSV solves one of the systems of equations
A*x = b, or A'*x = b,
where b and x are n element vectors and A is an n by n unit, or
non-unit, upper or lower triangular matrix.
No test for singularity or near-singularity is included in this
routine. Such tests must be performed before calling this routine.
Parameters
==========
UPLO - CHARACTER*1.
On entry, UPLO specifies whether the matrix is an upper or
lower triangular matrix as follows:
UPLO = 'U' or 'u' A is an upper triangular matrix.
UPLO = 'L' or 'l' A is a lower triangular matrix.
Unchanged on exit.
TRANS - CHARACTER*1.
On entry, TRANS specifies the equations to be solved as
follows:
TRANS = 'N' or 'n' A*x = b.
TRANS = 'T' or 't' A'*x = b.
TRANS = 'C' or 'c' A'*x = b.
Unchanged on exit.
DIAG - CHARACTER*1.
On entry, DIAG specifies whether or not A is unit
triangular as follows:
DIAG = 'U' or 'u' A is assumed to be unit triangular.
DIAG = 'N' or 'n' A is not assumed to be unit
triangular.
Unchanged on exit.
N - INTEGER.
On entry, N specifies the order of the matrix A.
N must be at least zero.
Unchanged on exit.
A - DOUBLE PRECISION array of DIMENSION ( LDA, n ).
Before entry with UPLO = 'U' or 'u', the leading n by n
upper triangular part of the array A must contain the upper
triangular matrix and the strictly lower triangular part of
A is not referenced.
Before entry with UPLO = 'L' or 'l', the leading n by n
lower triangular part of the array A must contain the lower
triangular matrix and the strictly upper triangular part of
A is not referenced.
Note that when DIAG = 'U' or 'u', the diagonal elements of
A are not referenced either, but are assumed to be unity.
Unchanged on exit.
LDA - INTEGER.
On entry, LDA specifies the first dimension of A as declared
in the calling (sub) program. LDA must be at least
max( 1, n ).
Unchanged on exit.
X - DOUBLE PRECISION array of dimension at least
( 1 + ( n - 1 )*abs( INCX ) ).
Before entry, the incremented array X must contain the n
element right-hand side vector b. On exit, X is overwritten
with the solution vector x.
INCX - INTEGER.
On entry, INCX specifies the increment for the elements of
X. INCX must not be zero.
Unchanged on exit.
Level 2 Blas routine.
-- Written on 22-October-1986.
Jack Dongarra, Argonne National Lab.
Jeremy Du Croz, Nag Central Office.
Sven Hammarling, Nag Central Office.
Richard Hanson, Sandia National Labs.
Test the input parameters.
Parameter adjustments
Function Body */
#define X(I) x[(I)-1]
#define A(I,J) a[(I)-1 + ((J)-1)* ( *lda)]
info = 0;
if (strncmp(uplo, "U", 1)!=0 && strncmp(uplo, "L", 1)!=0) {
info = 1;
} else if (strncmp(trans, "N", 1)!=0 && strncmp(trans, "T", 1)!=0 &&
strncmp(trans, "C", 1)!=0) {
info = 2;
} else if (strncmp(diag, "U", 1)!=0 && strncmp(diag, "N", 1)!=0) {
info = 3;
} else if (*n < 0) {
info = 4;
} else if (*lda < max(1,*n)) {
info = 6;
} else if (*incx == 0) {
info = 8;
}
if (info != 0) {
input_error_dist("DTRSV ", &info);
return 0;
}
/* Quick return if possible. */
if (*n == 0) {
return 0;
}
nounit = (strncmp(diag, "N", 1)==0);
/* Set up the start point in X if the increment is not unity. This
will be ( N - 1 )*INCX too small for descending loops. */
if (*incx <= 0) {
kx = 1 - (*n - 1) * *incx;
} else if (*incx != 1) {
kx = 1;
}
/* Start the operations. In this version the elements of A are
accessed sequentially with one pass through A. */
if (strncmp(trans, "N", 1)==0) {
/* Form x := inv( A )*x. */
if (strncmp(uplo, "U", 1)==0) {
if (*incx == 1) {
for (j = *n; j >= 1; --j) {
if (X(j) != 0.) {
if (nounit) {
X(j) /= A(j,j);
}
temp = X(j);
for (i = j - 1; i >= 1; --i) {
X(i) -= temp * A(i,j);
/* L10: */
}
}
/* L20: */
}
} else {
jx = kx + (*n - 1) * *incx;
for (j = *n; j >= 1; --j) {
if (X(jx) != 0.) {
if (nounit) {
X(jx) /= A(j,j);
}
temp = X(jx);
ix = jx;
for (i = j - 1; i >= 1; --i) {
ix -= *incx;
X(ix) -= temp * A(i,j);
/* L30: */
}
}
jx -= *incx;
/* L40: */
}
}
} else {
if (*incx == 1) {
i__1 = *n;
for (j = 1; j <= *n; ++j) {
if (X(j) != 0.) {
if (nounit) {
X(j) /= A(j,j);
}
temp = X(j);
i__2 = *n;
for (i = j + 1; i <= *n; ++i) {
X(i) -= temp * A(i,j);
/* L50: */
}
}
/* L60: */
}
} else {
jx = kx;
i__1 = *n;
for (j = 1; j <= *n; ++j) {
if (X(jx) != 0.) {
if (nounit) {
X(jx) /= A(j,j);
}
temp = X(jx);
ix = jx;
i__2 = *n;
for (i = j + 1; i <= *n; ++i) {
ix += *incx;
X(ix) -= temp * A(i,j);
/* L70: */
}
}
jx += *incx;
/* L80: */
}
}
}
} else {
/* Form x := inv( A' )*x. */
if (strncmp(uplo, "U", 1)==0) {
if (*incx == 1) {
i__1 = *n;
for (j = 1; j <= *n; ++j) {
temp = X(j);
i__2 = j - 1;
for (i = 1; i <= j-1; ++i) {
temp -= A(i,j) * X(i);
/* L90: */
}
if (nounit) {
temp /= A(j,j);
}
X(j) = temp;
/* L100: */
}
} else {
jx = kx;
i__1 = *n;
for (j = 1; j <= *n; ++j) {
temp = X(jx);
ix = kx;
i__2 = j - 1;
for (i = 1; i <= j-1; ++i) {
temp -= A(i,j) * X(ix);
ix += *incx;
/* L110: */
}
if (nounit) {
temp /= A(j,j);
}
X(jx) = temp;
jx += *incx;
/* L120: */
}
}
} else {
if (*incx == 1) {
for (j = *n; j >= 1; --j) {
temp = X(j);
i__1 = j + 1;
for (i = *n; i >= j+1; --i) {
temp -= A(i,j) * X(i);
/* L130: */
}
if (nounit) {
temp /= A(j,j);
}
X(j) = temp;
/* L140: */
}
} else {
kx += (*n - 1) * *incx;
jx = kx;
for (j = *n; j >= 1; --j) {
temp = X(jx);
ix = kx;
i__1 = j + 1;
for (i = *n; i >= j+1; --i) {
temp -= A(i,j) * X(ix);
ix -= *incx;
/* L150: */
}
if (nounit) {
temp /= A(j,j);
}
X(jx) = temp;
jx -= *incx;
/* L160: */
}
}
}
}
return 0;
/* End of DTRSV . */
} /* dtrsv_ */