forked from johannesgerer/jburkardt-f
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtoms647.html
257 lines (228 loc) · 6.99 KB
/
toms647.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
<html>
<head>
<title>
TOMS647 - Faure, Halton and Sobol Quasirandom Sequences
</title>
</head>
<body bgcolor="#EEEEEE" link="#CC0000" alink="#FF3300" vlink="#000055">
<h1 align = "center">
TOMS647 <br> Faure, Halton and Sobol Quasirandom Sequences
</h1>
<hr>
<p>
<b>TOMS647</b>
is a FORTRAN90 library which
implements the Faure, Halton, and
Sobol quasirandom sequences.
</p>
<p>
A quasirandom or low discrepancy sequence, such as the Faure,
Halton, Hammersley, Niederreiter or Sobol sequences, is
"less random" than a pseudorandom number sequence, but
more useful for such tasks as approximation of integrals in
higher dimensions, and in global optimization.
This is because low discrepancy sequences tend to sample
space "more uniformly" than random numbers. Algorithms
that use such sequences may have superior convergence.
</p>
<p>
The original, true, correct version of ACM TOMS Algorithm 647
is available through ACM:
<a href = "http://www.acm.org/pubs/calgo/">
http://www.acm.org/pubs/calgo</a>
or NETLIB:
<a href = "http://www.netlib.org/toms/index.html">
http://www.netlib.org/toms/index.html"</a>.
</p>
<p>
The version displayed here has been converted to FORTRAN90,
and other internal changes have been made to suit me.
</p>
<h3 align = "center">
Languages:
</h3>
<p>
<b>TOMS647</b> is available in
<a href = "../../f77_src/toms647/toms647.html">a FORTRAN77 version</a> and
<a href = "../../f_src/toms647/toms647.html">a FORTRAN90 version</a>.
</p>
<h3 align = "center">
Related Data and Programs:
</h3>
<p>
<a href = "../../f_src/faure/faure.html">
FAURE</a>,
a FORTRAN90 library which
computes elements of a Faure sequence.
</p>
<p>
<a href = "../../f_src/halton/halton.html">
HALTON</a>,
a FORTRAN90 library which
computes elements of a Halton sequence.
</p>
<p>
<a href = "../../f_src/hammersley/hammersley.html">
HAMMERSLEY</a>,
a FORTRAN90 library which
computes elements of a Hammersley sequence.
</p>
<p>
<a href = "../../f_src/sobol/sobol.html">
SOBOL</a>,
a FORTRAN90 library which
computes elements of a Sobol sequence.
</p>
<h3 align = "center">
Reference:
</h3>
<p>
<ol>
<li>
Antonov, Saleev,<br>
USSR Computational Mathematics and Mathematical Physics,<br>
Volume 19, 1980, pages 252 - 256.
</li>
<li>
Paul Bratley, Bennett Fox,<br>
Algorithm 659:
Implementing Sobol's Quasirandom Sequence Generator,<br>
ACM Transactions on Mathematical Software,<br>
Volume 14, Number 1, pages 88-100, 1988.
</li>
<li>
Paul Bratley, Bennett Fox, Harald Niederreiter,<br>
Algorithm 738:
Programs to Generate Niederreiter's Low-Discrepancy Sequences,<br>
ACM Transactions on Mathematical Software,<br>
Volume 20, Number 4, pages 494-495, 1994.
</li>
<li>
Paul Bratley, Bennett Fox, Linus Schrage,<br>
A Guide to Simulation,<br>
Springer Verlag, pages 201-202, 1983.
</li>
<li>
Paul Bratley, Bennett Fox, Harald Niederreiter,<br>
Implementation and Tests of Low Discrepancy Sequences,<br>
ACM Transactions on Modeling and Computer Simulation,<br>
Volume 2, Number 3, pages 195-213, 1992.
</li>
<li>
Henri Faure,<br>
Discrepance de suites associees a un systeme de numeration
(en dimension s),<br>
Acta Arithmetica,<br>
Volume XLI, 1982, pages 337-351, especially page 342.
</li>
<li>
Bennett Fox,<br>
Algorithm 647:
Implementation and Relative Efficiency of Quasirandom
Sequence Generators,<br>
ACM Transactions on Mathematical Software,<br>
Volume 12, Number 4, pages 362-376, 1986.
</li>
<li>
John Halton, G B Smith,<br>
Algorithm 247: Radical-Inverse Quasi-Random Point Sequence,<br>
Communications of the ACM,<br>
Volume 7, 1964, pages 701-702.
</li>
<li>
Harald Niederreiter,<br>
Random Number Generation and quasi-Monte Carlo Methods,<br>
SIAM, 1992.
</li>
<li>
I Sobol,<br>
USSR Computational Mathematics and Mathematical Physics,<br>
Volume 16, pages 236-242, 1977.
</li>
<li>
I Sobol, Levitan, <br>
The Production of Points Uniformly Distributed in a Multidimensional
Cube (in Russian),<br>
Preprint IPM Akad. Nauk SSSR, <br>
Number 40, Moscow 1976.
</li>
</ol>
</p>
<h3 align = "center">
Source Code:
</h3>
<p>
<ul>
<li>
<a href = "toms647.f90">toms647.f90</a>, the source code;
</li>
<li>
<a href = "toms647.sh">toms647.sh</a>,
commands to compile the source code;
</li>
</ul>
</p>
<h3 align = "center">
Examples and Tests:
</h3>
<p>
<ul>
<li>
<a href = "toms647_prb.f90">toms647_prb.f90</a>,
the sample test code;
</li>
<li>
<a href = "toms647_prb.sh">toms647_prb.sh</a>,
commands to compile the test code;
</li>
<li>
<a href = "toms647_prb_output.txt">toms647_prb_output.txt</a>,
output from a run of the test code;
</li>
</ul>
</p>
<h3 align = "center">
List of Routines:
</h3>
<p>
<ul>
<li>
<b>INFAUR</b> initializes the Faure quasirandom number generator.
</li>
<li>
<b>GOFAUR</b> generates a new quasirandom Faure vector with each call.
</li>
<li>
<b>INHALT</b> initializes the Halton quasirandom number generator.
</li>
<li>
<b>GOHALT</b> generates a new quasirandom Halton vector with each call.
</li>
<li>
<b>INSOBL</b> initializes the Sobol quasirandom number generator.
</li>
<li>
<b>GOSOBL</b> generates a new quasirandom Sobol vector with each call.
</li>
<li>
<b>EXOR</b> calculates the exclusive OR of two integers.
</li>
<li>
<b>UNIF</b> is a portable pseudorandom number generator.
</li>
<li>
<b>TIMESTAMP</b> prints the current YMDHMS date as a time stamp.
</li>
</ul>
</p>
<p>
You can go up one level to <a href = "../f_src.html">
the FORTRAN90 source codes</a>.
</p>
<hr>
<i>
Last revised on 30 August 2005.
</i>
<!-- John Burkardt -->
</body>
</html>