forked from johannesgerer/jburkardt-f
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathoutput_sgi.txt
2588 lines (1780 loc) · 63.7 KB
/
output_sgi.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
Opening the transcript file "output".
MATMAN, version 1.61
Last modified on 25 January 2000.
An interactive program which carries out
elementary row operations on a matrix, or
the simplex method of linear programming.
Developed by Charles Cullen and John Burkardt.
All rights reserved by the authors. This program may
not be reproduced in any form without written permission.
Send comments to burkardt@psc.edu.
Enter command? ("H" for short menu, "HELP" for full menu, ? for full help)
#
# Turn off paging.
#
$
Paging turned OFF.
Enter command? ("H" for short menu, "HELP" for full menu, ? for full help)
#
# Get a brief list of legal commands.
#
h
A(I,J)=S Set matrix entry to S.
CHECK checks if the matrix is row reduced.
E enters a matrix to work on.
HELP for full help.
L switches to linear programming.
Q quits.
Z automatic row reduction (requires password).
? for interactive help.
R1 <=> R2 interchanges two rows
R1 <= S R1 multiplies a row by S.
R1 <= R1 + S R2 adds a multiple of another row.
Enter command? ("H" for short menu, "HELP" for full menu, ? for full help)
#
# Get the full list of legal commands.
#
help
Here is a list of all MATMAN commands:
A(I,J)=S Set matrix entry to S.
ADD Add S times row I to row J.
B Set up sample problem.
BASIC I, J changes basic variable I to J.
CHECK Check matrix for reduced row echelon form.
CHECK Check linear program table for optimality.
D/M Divide/Multiply row I by S.
DEC Use decimal arithmetic.
DEC_DIGIT Set the number of decimal digits.
DET Print the determinant of the matrix.
E Enter matrix with I rows and J columns.
E Enter a linear programming problem, I constraints, J variables.
EDET Print ERO determinant.
F Choose arithmetic (Real, Fraction, or Decimal).
G Add/delete a row or column of the matrix.
H for quick help.
HELP for full help (this list).
I Interchange rows I and J.
I_BIG Set size of largest integer for fractions.
INIT Initialize data.
J Jacobi rotation in (I,J) plane.
K Open/close the transcript file.
L To switch between linear algebra and linear programming.
P Pivot linear program, entering I, departing J.
Q Quit.
RES Restore a saved matrix or table
RAT Use rational arithmetic.
REAL Use real arithmetic.
S Store the current matrix or table.
T Type out the matrix
TR Transpose the matrix.
TS Type linear programming solution.
U Undo last operation.
V Remove LP artificial variables.
W/X Write/read example to/from file.
Y Turn automatic printing ON or OFF.
Z Automatic operation (requires password).
# Begins a comment line.
< Get input from a file.
%/$ Turn paging on/off.
R1 <=> R2 interchanges two rows
R1 <= S R1 multiplies a row by S.
R1 <= R1 + S R2 adds a multiple of another row.
Enter command? ("H" for short menu, "HELP" for full menu, ? for full help)
#
# Work in fractional arithmetic.
#
rational
You are already using the arithmetic type that
you have requested.
Enter command? ("H" for short menu, "HELP" for full menu, ? for full help)
#
# Enter a 3 by 3 matrix.
#
e
Enter number of rows, number of columns.
3,3
Enter entries 1 to 3 of row 1
1,2,3
Enter entries 1 to 3 of row 2
4,5,6
Enter entries 1 to 3 of row 3
7,8,11
A copy of this matrix is being saved.
The current matrix:
1 2 3
4 5 6
7 8 11
Enter command? ("H" for short menu, "HELP" for full menu, ? for full help)
#
# Interchange rows 1 and 3
#
r1 <=> r3
ERO: Row 1 <=> Row 3
The current matrix:
7 8 11
4 5 6
1 2 3
Enter command? ("H" for short menu, "HELP" for full menu, ? for full help)
#
# Divide row 1 by 7
#
r1 <= r1/7
ERO: Row 1 <= Row 1 / 7
The current matrix:
1 8 11
7 7
4 5 6
1 2 3
Enter command? ("H" for short menu, "HELP" for full menu, ? for full help)
#
# Add -4 times row 1 to row 2,
# Add -1 times row 1 to row 3.
#
r2 <= r2 - 4 r1
ERO: Row 2 <= Row 2 - 4 Row 1
The current matrix:
1 8 11
7 7
0 3 -2
7 7
1 2 3
Enter command? ("H" for short menu, "HELP" for full menu, ? for full help)
r3 <= r3 - 1 r1
ERO: Row 3 <= Row 3 - Row 1
The current matrix:
1 8 11
7 7
0 3 -2
7 7
0 6 10
7 7
Enter command? ("H" for short menu, "HELP" for full menu, ? for full help)
#
# Interchange rows 2 and 3
# and divide row 2 by 6/7.
#
r2 <=> r3
ERO: Row 2 <=> Row 3
The current matrix:
1 8 11
7 7
0 6 10
7 7
0 3 -2
7 7
Enter command? ("H" for short menu, "HELP" for full menu, ? for full help)
r2 <= r2 / 6/7
ERO: Row 2 <= Row 2 * 7/6
The current matrix:
1 8 11
7 7
0 1 5
3
0 3 -2
7 7
Enter command? ("H" for short menu, "HELP" for full menu, ? for full help)
#
# Add -8/7 times row 2 to row 1,
# Add -3/7 times row 2 to row 3.
#
r1 <= r1 - 8/7 r2
ERO: Row 1 <= Row 1 - 8/7 Row 2
The current matrix:
1 0 -1
3
0 1 5
3
0 3 -2
7 7
Enter command? ("H" for short menu, "HELP" for full menu, ? for full help)
r3 <= r3 - 3/7 r2
ERO: Row 3 <= Row 3 - 3/7 Row 2
The current matrix:
1 0 -1
3
0 1 5
3
0 0 -1
Enter command? ("H" for short menu, "HELP" for full menu, ? for full help)
#
# Check for row reduced echelon form.
#
check
Checking the matrix for row echelon form...
The matrix is NOT in row echelon form.
The first nonzero entry in row 3
which occurs in column 3
is -1 rather than 1.
Enter command? ("H" for short menu, "HELP" for full menu, ? for full help)
#
# Divide row 3 by -1
#
r3 <= - r3
ERO: Row 3 <= - Row 3
The current matrix:
1 0 -1
3
0 1 5
3
0 0 1
Enter command? ("H" for short menu, "HELP" for full menu, ? for full help)
#
# Add 1/3 row 3 to row 1
# Add -5/3 row 3 to row 2
#
r1 <= r1 + 1/3 r3
ERO: Row 1 <= Row 1 + 1/3 Row 3
The current matrix:
1 0 0
0 1 5
3
0 0 1
Enter command? ("H" for short menu, "HELP" for full menu, ? for full help)
r2 <= r2 -5/3 r3
ERO: Row 2 <= Row 2 - 5/3 Row 3
The current matrix:
1 0 0
0 1 0
0 0 1
Enter command? ("H" for short menu, "HELP" for full menu, ? for full help)
#
# Consider another matrix
#
e
Enter number of rows, number of columns.
3,3
Enter entries 1 to 3 of row 1
1,2,3
Enter entries 1 to 3 of row 2
4,5,6
Enter entries 1 to 3 of row 3
7,8,9
A copy of this matrix is being saved.
The current matrix:
1 2 3
4 5 6
7 8 9
Enter command? ("H" for short menu, "HELP" for full menu, ? for full help)
#
# Request automatic conversion to row reduced echelon form.
#
z 31984
ERO: Row 3 <=> Row 1
ERO: Row 1 <= Row 1 / 7
ERO: Row 2 <= Row 2 - 4 Row 1
ERO: Row 3 <= Row 3 - Row 1
ERO: Row 3 <=> Row 2
ERO: Row 2 <= Row 2 * 7/6
ERO: Row 1 <= Row 1 - 8/7 Row 2
ERO: Row 3 <= Row 3 - 3/7 Row 2
The current matrix:
1 0 -1
0 1 2
0 0 0
Enter command? ("H" for short menu, "HELP" for full menu, ? for full help)
#
# Restore the original matrix.
#
restore
The saved matrix has been restored.
The current matrix:
1 2 3
4 5 6
7 8 9
Enter command? ("H" for short menu, "HELP" for full menu, ? for full help)
#
# Insert a new row at row position 3.
#
g +r3
Enter entries 1 to 3 of row 3
6.1, 6.2, 6.3
The current matrix:
1 2 3
4 5 6
61 31 63
10 5 10
7 8 9
Enter command? ("H" for short menu, "HELP" for full menu, ? for full help)
#
# Change entry 3,2 to 77
#
a(3,2) = 77
A(3,2) = 77
The current matrix:
1 2 3
4 5 6
61 77 63
10 10
7 8 9
Enter command? ("H" for short menu, "HELP" for full menu, ? for full help)
#
# Remove column 2.
#
g -c2
The column has been deleted!
The current matrix:
1 3
4 6
61 63
10 10
7 9
Enter command? ("H" for short menu, "HELP" for full menu, ? for full help)
#
# Get a determinant test matrix of order 4.
#
b d 4
The following examples are available:
"D" for determinant;
"E" for eigenvalues;
"I" for inverse;
"S" for linear solve.
"C" to cancel.
The current matrix:
0 6 -4 -8
-3 -10 -4 -5
9 -5 -1 -8
-1 5 1 9
Enter command? ("H" for short menu, "HELP" for full menu, ? for full help)
det
The determinant is -4350
Enter command? ("H" for short menu, "HELP" for full menu, ? for full help)
#
# Repeat work in real arithmetic.
#
real
Switching to REAL arithmetic.
A note about REAL arithmetic:
The representation is approximate;
Arithmetic operations are approximate.
In particular, a singular matrix may be
incorrectly found to be nonsingular.
The current matrix:
0. 6. -4. -8.
-3. -10. -4. -5.
9. -5. -1. -8.
-1. 5. 1. 9.
Enter command? ("H" for short menu, "HELP" for full menu, ? for full help)
e
Enter number of rows, number of columns.
3,3
Enter entries 1 to 3 of row 1
1,2,3
Enter entries 1 to 3 of row 2
4,5,6
Enter entries 1 to 3 of row 3
7,8,11
A copy of this matrix is being saved.
The current matrix:
1. 2. 3.
4. 5. 6.
7. 8. 11.
Enter command? ("H" for short menu, "HELP" for full menu, ? for full help)
#
r1 <=> r3
ERO: Row 1 <=> Row 3
The current matrix:
7. 8. 11.
4. 5. 6.
1. 2. 3.
Enter command? ("H" for short menu, "HELP" for full menu, ? for full help)
r1 <= r1/7
ERO: Row 1 <= Row 1 / 7
The current matrix:
1.0000000 1.1428572 1.5714285
4.0000000 5.0000000 6.0000000
1.0000000 2.0000000 3.0000000
Enter command? ("H" for short menu, "HELP" for full menu, ? for full help)
r2 <= r2 -4 r1
ERO: Row 2 <= Row 2 - 4 Row 1
The current matrix:
1.0000000 1.1428572 1.5714285
0.0000000 0.4285712 -0.2857141
1.0000000 2.0000000 3.0000000
Enter command? ("H" for short menu, "HELP" for full menu, ? for full help)
r3 <= r3 - r1
ERO: Row 3 <= Row 3 - Row 1
The current matrix:
1.0000000 1.1428572 1.5714285
0.0000000 0.4285712 -0.2857141
0.0000000 0.8571428 1.4285715
Enter command? ("H" for short menu, "HELP" for full menu, ? for full help)
Enter command? ("H" for short menu, "HELP" for full menu, ? for full help)
r2 <=> r3
ERO: Row 2 <=> Row 3
The current matrix:
1.0000000 1.1428572 1.5714285
0.0000000 0.8571428 1.4285715
0.0000000 0.4285712 -0.2857141
Enter command? ("H" for short menu, "HELP" for full menu, ? for full help)
r2 <= r2 / 0.8571428
ERO: Row 2 <= Row 2 / 0.857143
The current matrix:
1.0000000 1.1428572 1.5714285
0.0000000 1.0000000 1.6666669
0.0000000 0.4285712 -0.2857141
Enter command? ("H" for short menu, "HELP" for full menu, ? for full help)
r3 <= r3 - 0.4285712 r2
ERO: Row 3 <= Row 3 - 0.428571 Row 2
The current matrix:
1.0000000 1.1428572 1.5714285
0.0000000 1.0000000 1.6666669
0.0000000 0.0000000 -0.9999996
Enter command? ("H" for short menu, "HELP" for full menu, ? for full help)
Enter command? ("H" for short menu, "HELP" for full menu, ? for full help)
r3 <= r3 / -0.9999996
ERO: Row 3 <= Row 3 / -1.00000
The current matrix:
1.0000000 1.1428572 1.5714285
0.0000000 1.0000000 1.6666669
0.0000000 0.0000000 1.0000000
Enter command? ("H" for short menu, "HELP" for full menu, ? for full help)
#
check
Checking the matrix for row echelon form...
The matrix is NOT in row echelon form.
The first nonzero entry in row 3
which occurs in column 2
is -0.298023E-07 rather than 1.
Enter command? ("H" for short menu, "HELP" for full menu, ? for full help)
#
# OK, cheat and force the entry to be zero.
#
a(3,2) = 0.0
A(3,2) = 0
The current matrix:
1.0000000 1.1428572 1.5714285
0.0000000 1.0000000 1.6666669
0.0000000 0.0000000 1.0000000
Enter command? ("H" for short menu, "HELP" for full menu, ? for full help)
check
Checking the matrix for row echelon form...
The matrix is in row echelon form.
Checking the matrix for row reduced echelon form...
The matrix is NOT in reduced row echelon form.
Row 2 has its leading 1 in column 2.
This means that all other entries of that column should be zero.
But the entry in row 1 is 1.14286
Enter command? ("H" for short menu, "HELP" for full menu, ? for full help)
#
e
Enter number of rows, number of columns.
3,3
Enter entries 1 to 3 of row 1
1,2,3
Enter entries 1 to 3 of row 2
4,5,6
Enter entries 1 to 3 of row 3
7,8,9
A copy of this matrix is being saved.
The current matrix:
1. 2. 3.
4. 5. 6.
7. 8. 9.
Enter command? ("H" for short menu, "HELP" for full menu, ? for full help)
z
ERO: Row 3 <=> Row 1
ERO: Row 1 <= Row 1 / 7
ERO: Row 2 <= Row 2 - 4 Row 1
ERO: Row 3 <= Row 3 - Row 1
ERO: Row 3 <=> Row 2
ERO: Row 2 <= Row 2 / 0.857143
ERO: Row 1 <= Row 1 - 1.14286 Row 2
ERO: Row 3 <= Row 3 - 0.428571 Row 2
ERO: Row 3 <= Row 3 / 0.357628E-06
ERO: Row 1 <= Row 1 + 1.00000 Row 3
ERO: Row 2 <= Row 2 - 2.00000 Row 3
The current matrix:
1. 0. 0.
0. 1. 0.
0. 0. 1.
Enter command? ("H" for short menu, "HELP" for full menu, ? for full help)
#
r
#
# Insert a row.
#
g +r3
Enter entries 1 to 3 of row 3
6.1, 6.2, 6.3
The current matrix:
1.0000000 0.0000000 0.0000000
0.0000000 1.0000000 0.0000000
6.0999999 6.1999998 6.3000002
0.0000000 0.0000000 1.0000000
Enter command? ("H" for short menu, "HELP" for full menu, ? for full help)
#
# Change A(3,2) to 77.
#
a(3,2) = 77
A(3,2) = 77
The current matrix:
1.0000000 0.0000000 0.0000000
0.0000000 1.0000000 0.0000000
6.0999999 77.0000000 6.3000002
0.0000000 0.0000000 1.0000000
Enter command? ("H" for short menu, "HELP" for full menu, ? for full help)
#
# Delete column 2.
#
g -c2
The column has been deleted!
The current matrix:
1.0000000 0.0000000
0.0000000 0.0000000
6.0999999 6.3000002
0.0000000 1.0000000
Enter command? ("H" for short menu, "HELP" for full menu, ? for full help)
#
# Get a determinant test matrix of order 4.
#
b d 4
The following examples are available:
"D" for determinant;
"E" for eigenvalues;
"I" for inverse;
"S" for linear solve.
"C" to cancel.
The current matrix:
-2. 7. -2. -8.
-5. 8. -2. -5.
3. -6. -3. 3.
2. -2. 8. -7.
Enter command? ("H" for short menu, "HELP" for full menu, ? for full help)
det
The determinant is 891
Enter command? ("H" for short menu, "HELP" for full menu, ? for full help)
#
# Repeat work in decimal arithmetic.
#
#
# Set number of decimal digits to 5
#
dec_digit 5
How many decimal places should be used in
converting real results to a decimal?
1 means 123.45 becomes 1 * 10**2
2 means 123.45 becomes 12 * 10**1
3 means 123.45 becomes 123
and so on.
The number of decimal digits will now be 5
Enter command? ("H" for short menu, "HELP" for full menu, ? for full help)
#
# Change to decimal arithmetic.
#
decimal
Switching to DECIMAL arithmetic.
The current number of decimal places is 5
A note about DECIMAL arithmetic:
The representation of decimals is exact.
The arithmetic of decimals is approximate,
because only a certain number of decimal
places are stored.
Also, the representation can break down
if any exponent becomes too large or small.
The current matrix:
-2 7 -2 -8
-5 8 -2 -5
3 -6 -3 3
2 -2 8 -7
Enter command? ("H" for short menu, "HELP" for full menu, ? for full help)
#
# Enter the test matrix.
#
e
Enter number of rows, number of columns.
3,3
Enter entries 1 to 3 of row 1
1,2,3
Enter entries 1 to 3 of row 2
4,5,6
Enter entries 1 to 3 of row 3
7,8,11
A copy of this matrix is being saved.
The current matrix:
1 2 3
4 5 6
7 8 11
Enter command? ("H" for short menu, "HELP" for full menu, ? for full help)
r1 <= r3
ERO: Row 1 <=> Row 3
The current matrix:
7 8 11
4 5 6
1 2 3
Enter command? ("H" for short menu, "HELP" for full menu, ? for full help)
r1 <= r1/7
ERO: Row 1 <= Row 1 / 7
The current matrix:
1 1.1429 1.5714
4 5 6
1 2 3
Enter command? ("H" for short menu, "HELP" for full menu, ? for full help)
r2 <= r2 - 4 r1
ERO: Row 2 <= Row 2 - 4 Row 1
The current matrix:
1 1.1429 1.5714
0 0.4284 -0.2856
1 2 3
Enter command? ("H" for short menu, "HELP" for full menu, ? for full help)
r3 <= r3 - r1
ERO: Row 3 <= Row 3 - Row 1
The current matrix:
1 1.1429 1.5714
0 0.4284 -0.2856
0 0.8571 1.4286
Enter command? ("H" for short menu, "HELP" for full menu, ? for full help)
Enter command? ("H" for short menu, "HELP" for full menu, ? for full help)
r2 <=> r3
ERO: Row 2 <=> Row 3
The current matrix:
1 1.1429 1.5714
0 0.8571 1.4286
0 0.4284 -0.2856
Enter command? ("H" for short menu, "HELP" for full menu, ? for full help)
r2 <= r2 / 0.8571
ERO: Row 2 <= Row 2 / 0.8571
The current matrix:
1 1.1429 1.5714
0 1 1.6668
0 0.4284 -0.2856
Enter command? ("H" for short menu, "HELP" for full menu, ? for full help)
r3 <= r3 - 0.4284 r2
ERO: Row 3 <= Row 3 - 0.4284 Row 2
The current matrix:
1 1.1429 1.5714
0 1 1.6668
0 0 -0.99965
Enter command? ("H" for short menu, "HELP" for full menu, ? for full help)
Enter command? ("H" for short menu, "HELP" for full menu, ? for full help)
r3 <= r3 / -0.99965
ERO: Row 3 <= Row 3 / -0.99965
The current matrix:
1 1.1429 1.5714
0 1 1.6668
0 0 1
Enter command? ("H" for short menu, "HELP" for full menu, ? for full help)
Enter command? ("H" for short menu, "HELP" for full menu, ? for full help)
#
check
Checking the matrix for row echelon form...
The matrix is in row echelon form.
Checking the matrix for row reduced echelon form...
The matrix is NOT in reduced row echelon form.
Row 2 has its leading 1 in column 2.
This means that all other entries of that column should be zero.
But the entry in row 1 is 1.1429
Enter command? ("H" for short menu, "HELP" for full menu, ? for full help)
#
# Enter a new matrix.
#
e
Enter number of rows, number of columns.
3,3
Enter entries 1 to 3 of row 1
1,2,3
Enter entries 1 to 3 of row 2
4,5,6
Enter entries 1 to 3 of row 3
7,8,9
A copy of this matrix is being saved.
The current matrix:
1 2 3
4 5 6
7 8 9
Enter command? ("H" for short menu, "HELP" for full menu, ? for full help)
#
# Automatically process it.
#
z
ERO: Row 3 <=> Row 1
ERO: Row 1 <= Row 1 / 7
ERO: Row 2 <= Row 2 - 4 Row 1
ERO: Row 3 <= Row 3 - Row 1
ERO: Row 3 <=> Row 2
ERO: Row 2 <= Row 2 / 0.8571
ERO: Row 1 <= Row 1 - 1.1429 Row 2
ERO: Row 3 <= Row 3 - 0.4284 Row 2
ERO: Row 3 <= Row 3 / 0.00036
ERO: Row 1 <= Row 1 + 1.0002 Row 3
ERO: Row 2 <= Row 2 - 2.0001 Row 3
The current matrix:
1 0 0
0 1 0
0 0 1
Enter command? ("H" for short menu, "HELP" for full menu, ? for full help)
#
# Restore the original matrix.
#
r
#
# Insert a row.
#
g +r3
Enter entries 1 to 3 of row 3
6.1, 6.2, 6.3
The current matrix:
1 0 0
0 1 0
6.1 6.2 6.3
0 0 1
Enter command? ("H" for short menu, "HELP" for full menu, ? for full help)
#
# Change entry (3,2) to 77.
#
a(3,2) = 77
A(3,2) = 77
The current matrix:
1 0 0
0 1 0
6.1 77 6.3
0 0 1
Enter command? ("H" for short menu, "HELP" for full menu, ? for full help)
#
# Remove column 2.
#
g -c2
The column has been deleted!