forked from johannesgerer/jburkardt-f
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathinput.txt
345 lines (339 loc) · 3.57 KB
/
input.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
#
# Turn off paging.
#
$
#
# Get a brief list of legal commands.
#
h
#
# Get the full list of legal commands.
#
help
#
# Work in fractional arithmetic.
#
rational
#
# Enter a 3 by 3 matrix.
#
e
3,3
1,2,3
4,5,6
7,8,11
#
# Interchange rows 1 and 3
#
r1 <=> r3
#
# Divide row 1 by 7
#
r1 <= r1/7
#
# Add -4 times row 1 to row 2,
# Add -1 times row 1 to row 3.
#
r2 <= r2 - 4 r1
r3 <= r3 - 1 r1
#
# Interchange rows 2 and 3
# and divide row 2 by 6/7.
#
r2 <=> r3
r2 <= r2 / 6/7
#
# Add -8/7 times row 2 to row 1,
# Add -3/7 times row 2 to row 3.
#
r1 <= r1 - 8/7 r2
r3 <= r3 - 3/7 r2
#
# Check for row reduced echelon form.
#
check
#
# Divide row 3 by -1
#
r3 <= - r3
#
# Add 1/3 row 3 to row 1
# Add -5/3 row 3 to row 2
#
r1 <= r1 + 1/3 r3
r2 <= r2 -5/3 r3
#
# Consider another matrix
#
e
3,3
1,2,3
4,5,6
7,8,9
#
# Request automatic conversion to row reduced echelon form.
#
z 31984
#
# Restore the original matrix.
#
restore
#
# Insert a new row at row position 3.
#
g +r3
6.1, 6.2, 6.3
#
# Change entry 3,2 to 77
#
a(3,2) = 77
#
# Remove column 2.
#
g -c2
#
# Get a determinant test matrix of order 4.
#
b d 4
det
#
# Repeat work in real arithmetic.
#
real
e
3,3
1,2,3
4,5,6
7,8,11
#
r1 <=> r3
r1 <= r1/7
r2 <= r2 -4 r1
r3 <= r3 - r1
r2 <=> r3
r2 <= r2 / 0.8571428
r3 <= r3 - 0.4285712 r2
r3 <= r3 / -0.9999996
#
check
#
# OK, cheat and force the entry to be zero.
#
a(3,2) = 0.0
check
#
e
3,3
1,2,3
4,5,6
7,8,9
z
#
r
#
# Insert a row.
#
g +r3
6.1, 6.2, 6.3
#
# Change A(3,2) to 77.
#
a(3,2) = 77
#
# Delete column 2.
#
g -c2
#
# Get a determinant test matrix of order 4.
#
b d 4
det
#
# Repeat work in decimal arithmetic.
#
#
# Set number of decimal digits to 5
#
dec_digit 5
#
# Change to decimal arithmetic.
#
decimal
#
# Enter the test matrix.
#
e
3,3
1,2,3
4,5,6
7,8,11
r1 <= r3
r1 <= r1/7
r2 <= r2 - 4 r1
r3 <= r3 - r1
r2 <=> r3
r2 <= r2 / 0.8571
r3 <= r3 - 0.4284 r2
r3 <= r3 / -0.99965
#
check
#
# Enter a new matrix.
#
e
3,3
1,2,3
4,5,6
7,8,9
#
# Automatically process it.
#
z
#
# Restore the original matrix.
#
r
#
# Insert a row.
#
g +r3
6.1, 6.2, 6.3
#
# Change entry (3,2) to 77.
#
a(3,2) = 77
#
# Remove column 2.
#
g -c2
#
# Get a determinant test matrix of order 4.
#
b d 4
det
#
# Work in real arithmetic
#
real
#
# Get a sample matrix for the Jacobi method.
#
b e 4
#
# Use Jacobi rotations.
#
j 1,2
3,2
4,2
4,3
3,2
4,2
4,3
3,2
q
#
# Switch to Linear Programming mode,
# and don't save the current matrix.
#
l
no
#
# Get a brief list of linear programming commands.
#
h
#
# Work in fractional arithmetic
#
rational
#
# Get the "simple" linear programming example.
#
b s
#
# Pivot on the first variable and second row.
#
p 1,2
#
# Pivot on the second variable, first row.
#
p 2,1
#
# Check for optimality.
#
check
#
# Repeat work in real arithmetic
#
real
#
# Get the "simple" linear programming example.
#
b s
p 1,2
p 2,1
check
#
# Repeat work in decimal arithmetic
#
decimal
#
# Get the "simple" linear programming example.
#
b s
p 1,2
p 2,1
check
#
# Work in fractional arithmetic
#
rational
#
# Get the "advanced" linear programming example.
#
b a
#
# Automatically handle it.
#
z
#
# Remove artificial variables.
#
v
#
# Eliminate the nonzero objective row entries associated with
# the basic variables, X1 and X2.
#
r5 <= r5 + 40 r2
r5 <= r5 + 30 r1
#
# Reapply the simplex method to the new tableau.
#
z
#
# Repeat work in real arithmetic
#
real
#
b a
z
v
r5 <= r5 + 40 r2
r5 <= r5 + 30 r1
z
#
# Repeat work in decimal arithmetic
#
decimal
#
# Get the advanced linear programming example.
#
b a
z
v
r5 <= r5 + 40 r2
r5 <= r5 + 30 r1
z
#
# Quit
#
quit