forked from johannesgerer/jburkardt-f
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathrcm.html
453 lines (415 loc) · 13.1 KB
/
rcm.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
<html>
<head>
<title>
RCM - Reverse Cuthill McKee Ordering
</title>
</head>
<body bgcolor="#EEEEEE" link="#CC0000" alink="#FF3300" vlink="#000055">
<h1 align = "center">
RCM <br> Reverse Cuthill McKee Ordering
</h1>
<hr>
<p>
<b>RCM</b>
is a FORTRAN90 library which
computes the reverse
Cuthill McKee ("RCM") ordering of the nodes of a graph.
</p>
<p>
The RCM ordering is frequently used when a matrix is to be
generated whose rows and columns are numbered according to
the numbering of the nodes. By an appropriate renumbering
of the nodes, it is often possible to produce a matrix with a
much smaller bandwidth.
</p>
<p>
The bandwidth of a matrix is computed as the maximum bandwidth
of each row of the matrix. The bandwidth of a row of the matrix
is essentially the number of matrix entries between the first
and last nonzero entries in the row, with the proviso that
the diagonal entry is always treated as though it were nonzero.
</p>
<p>
This library includes a few routines to handle the common case
where the connectivity can be described in terms of a triangulation
of the nodes, that is, a grouping of the nodes into sets of
3-node or 6-node triangles. The natural description of a triangulation
is simply a listing of the nodes that make up each triangle. The
library includes routines for determining the adjacency structure
associated with a triangulation, and the test problems include
examples of how the nodes in a triangulation can be relabeled
with the RCM permutation.
</p>
<p>
Here is a simple example of how reordering can reduce the
bandwidth. In our first picture, we have nine nodes:
<pre>
5--7--6
| | /
4--8--2
| | |
9--1--3
</pre>
The corresponding adjacency matrix is:
<pre>
* . 1 . . . . 1 1
. * 1 . . 1 1 1 .
1 1 * . . . . . .
. . . * . . . 1 1
. . . . * . 1 1 .
. 1 . . . * 1 . .
. 1 . . 1 1 * . .
1 1 . 1 1 . . * .
1 . . 1 . . . . *
</pre>
which has a disastrous bandwidth of 17 (lower and upper bandwidths
of 8, and 1 for the diagonal.)
<p>
<p>
If we keep the same connectivity graph, but relabel the nodes,
we could get a picture like this:
<pre>
7--8--9
| | /
3--5--6
| | |
1--2--4
</pre>
whose adjacency matrix is:
<pre>
* 1 1 . . . . . .
1 * . 1 1 . . . .
1 . * . 1 . . . .
. 1 . * . 1 . . .
. 1 1 . * 1 1 . .
. . . 1 1 * . 1 1
. . . . 1 . * 1 .
. . . . . 1 1 * 1
. . . . . 1 . 1 *
</pre>
which has a bandwidth of 7 (lower and upper bandwidths
of 3, and 1 for the diagonal.)
<p>
<h3 align = "center">
Licensing:
</h3>
<p>
The computer code and data files described and made available on this web page
are distributed under
<a href = "../../txt/gnu_lgpl.txt">the GNU LGPL license.</a>
</p>
<h3 align = "center">
Languages:
</h3>
<p>
<b>RCM</b> is available in
<a href = "../../cpp_src/rcm/rcm.html">a C++ version</a> and
<a href = "../../f_src/rcm/rcm.html">a FORTRAN90 version</a> and
<a href = "../../m_src/rcm/rcm.html">a MATLAB version</a>.
</p>
<h3 align = "center">
Related Data and Programs:
</h3>
<p>
<a href = "../../f_src/mesh_bandwidth/mesh_bandwidth.html">
MESH_BANDWIDTH</a>,
a FORTRAN90 program which
returns the geometric bandwidth associated with a mesh of
elements of any order and in a space of arbitrary dimension.
</p>
<p>
<a href = "../../data/sparse_cc/sparse_cc.html">
SPARSE_CC</a>,
a data directory which
contains a description and examples of the CC format,
("compressed column") for storing a sparse matrix,
including a way to write the matrix as a set of three files.
</p>
<p>
<a href = "../../data/sparse_cr/sparse_cr.html">
SPARSE_CR</a>,
a data directory which
contains a description and examples of the CR format,
("compressed row") for storing a sparse matrix,
including a way to write the matrix as a set of three files.
</p>
<p>
<a href = "../../f_src/sparsepak/sparsepak.html">
SPARSEPAK</a>,
a FORTRAN90 library which
solves sparse linear systems using the Reverse Cuthill-McKee
reordering scheme.
</p>
<p>
<a href = "../../f_src/tet_mesh_rcm/tet_mesh_rcm.html">
TET_MESH_RCM</a>,
a FORTRAN90 program which
reads files
describing a tetrahedral mesh of nodes in 3D, and applies the RCM
algorithm to produce a renumbering of the tet mesh with a reduced
bandwidth.
</p>
<p>
<a href = "../../data/triangulation_order3/triangulation_order3.html">
TRIANGULATION ORDER3</a>,
a directory which
contains a description and
examples of order 3 triangulations.
</p>
<p>
<a href = "../../data/triangulation_order6/triangulation_order6.html">
TRIANGULATION ORDER6</a>,
a directory which
contains a description and
examples of order 6 triangulations.
</p>
<p>
<a href = "../../f_src/triangulation_rcm/triangulation_rcm.html">
TRIANGULATION_RCM</a>,
a FORTRAN90 program which
reads files describing a triangulation of nodes in 2D, and applies the RCM algorithm
to produce a renumbering of the triangulation with a reduced
bandwidth.
</p>
<h3 align = "center">
Reference:
</h3>
<p>
<ol>
<li>
HL Crane, Norman Gibbs, William Poole, Paul Stockmeyer,<br>
Algorithm 508:
Matrix Bandwidth and Profile Reduction,<br>
ACM Transactions on Mathematical Software,<br>
Volume 2, Number 4, December 1976, pages 375-377.
</li>
<li>
Alan George, Joseph Liu,<br>
Computer Solution of Large Sparse Positive Definite Matrices,<br>
Prentice Hall, 1981,<br>
ISBN: 0131652745,<br>
LC: QA188.G46
</li>
<li>
Norman Gibbs,<br>
Algorithm 509:
A Hybrid Profile Reduction Algorithm,<br>
ACM Transactions on Mathematical Software,<br>
Volume 2, Number 4, December 1976, pages 378-387.
</li>
<li>
Norman Gibbs, William Poole, Paul Stockmeyer,<br>
An Algorithm for Reducing the Bandwidth
and Profile of a Sparse Matrix,<br>
SIAM Journal on Numerical Analysis,<br>
Volume 13, Number 2, April 1976, pages 236-250.
</li>
<li>
John Lewis,<br>
Algorithm 582:
The Gibbs-Poole-Stockmeyer and Gibbs-King Algorithms
for Reordering Sparse Matrices,<br>
ACM Transactions on Mathematical Software,<br>
Volume 8, Number 2, June 1982, pages 190-194.
</li>
</ol>
</p>
<h3 align = "center">
Source Code:
</h3>
<p>
<ul>
<li>
<a href = "rcm.f90">rcm.f90</a>, the source code.
</li>
<li>
<a href = "rcm.sh">rcm.sh</a>,
commands to compile the source code.
</li>
</ul>
</p>
<h3 align = "center">
Examples and Tests:
</h3>
<p>
<ul>
<li>
<a href = "rcm_prb.f90">rcm_prb.f90</a>,
a sample calling program.
</li>
<li>
<a href = "rcm_prb.sh">rcm_prb.sh</a>,
commands to compile and run the sample program.
</li>
<li>
<a href = "rcm_prb_output.txt">rcm_prb_output.txt</a>,
the output from a run of the sample program.
</li>
</ul>
</p>
<h3 align = "center">
List of Routines:
</h3>
<p>
<ul>
<li>
<b>ADJ_BANDWIDTH</b> computes the bandwidth of an adjacency matrix.
</li>
<li>
<b>ADJ_CONTAINS_IJ</b> determines if (I,J) is in an adjacency structure.
</li>
<li>
<b>ADJ_INSERT_IJ</b> inserts (I,J) into an adjacency structure.
</li>
<li>
<b>ADJ_PERM_BANDWIDTH</b> computes the bandwidth of a permuted adjacency matrix.
</li>
<li>
<b>ADJ_PERM_SHOW</b> displays a symbolic picture of a permuted adjacency matrix.
</li>
<li>
<b>ADJ_PRINT</b> prints adjacency information.
</li>
<li>
<b>ADJ_PRINT_SOME</b> prints some adjacency information.
</li>
<li>
<b>ADJ_SET</b> sets up the adjacency information.
</li>
<li>
<b>ADJ_SHOW</b> displays a symbolic picture of an adjacency matrix.
</li>
<li>
<b>DEGREE</b> computes the degrees of the nodes in the connected component.
</li>
<li>
<b>GENRCM</b> finds the reverse Cuthill-Mckee ordering for a general graph.
</li>
<li>
<b>GRAPH_01_ADJ</b> returns the adjacency vector for graph 1.
</li>
<li>
<b>GRAPH_01_ADJ_NUM</b> returns the number of adjacencies for graph 1.
</li>
<li>
<b>GRAPH_01_LABEL</b> returns the labels for graph 1.
</li>
<li>
<b>I4_SWAP</b> swaps two I4's.
</li>
<li>
<b>I4_UNIFORM</b> returns a scaled pseudorandom I4.
</li>
<li>
<b>I4MAT_PRINT_SOME</b> prints some of an I4MAT.
</li>
<li>
<b>I4MAT_TRANSPOSE_PRINT</b> prints an I4MAT, transposed.
</li>
<li>
<b>I4MAT_TRANSPOSE_PRINT_SOME</b> prints some of the transpose of an I4MAT.
</li>
<li>
<b>I4ROW_COMPARE</b> compares two rows of an I4ROW.
</li>
<li>
<b>I4ROW_SORT_A</b> ascending sorts an I4ROW.
</li>
<li>
<b>I4ROW_SWAP</b> swaps two rows of an I4ROW.
</li>
<li>
<b>I4VEC_HEAP_D</b> reorders an I4VEC into an descending heap.
</li>
<li>
<b>I4VEC_INDICATOR</b> sets an I4VEC to the vector A(I)=I.
</li>
<li>
<b>I4VEC_PRINT</b> prints an I4VEC.
</li>
<li>
<b>I4VEC_REVERSE</b> reverses the elements of an I4VEC.
</li>
<li>
<b>I4VEC_SORT_HEAP_A</b> ascending sorts an I4VEC using heap sort.
</li>
<li>
<b>LEVEL_SET</b> generates the connected level structure rooted at a given node.
</li>
<li>
<b>LEVEL_SET_PRINT</b> prints level set information.
</li>
<li>
<b>PERM_CHECK</b> checks that a vector represents a permutation.
</li>
<li>
<b>PERM_INVERSE</b> produces the inverse of a given permutation.
</li>
<li>
<b>PERM_UNIFORM</b> selects a random permutation of N objects.
</li>
<li>
<b>R82VEC_PERMUTE</b> permutes an R82VEC in place.
</li>
<li>
<b>R8MAT_PRINT_SOME</b> prints some of an R8MAT.
</li>
<li>
<b>R8MAT_TRANSPOSE_PRINT_SOME</b> prints some of an R8MAT, transposed.
</li>
<li>
<b>RCM</b> renumbers a connected component by the reverse Cuthill McKee algorithm.
</li>
<li>
<b>ROOT_FIND</b> finds a pseudo-peripheral node.
</li>
<li>
<b>SORT_HEAP_EXTERNAL</b> externally sorts a list of items into ascending order.
</li>
<li>
<b>TIMESTAMP</b> prints the current YMDHMS date as a time stamp.
</li>
<li>
<b>TRIANGULATION_ORDER3_ADJ_COUNT</b> counts adjacencies in a triangulation.
</li>
<li>
<b>TRIANGULATION_ORDER3_ADJ_SET</b> sets adjacencies in a triangulation.
</li>
<li>
<b>TRIANGULATION_ORDER3_EXAMPLE2</b> returns an example triangulation.
</li>
<li>
<b>TRIANGULATION_ORDER3_EXAMPLE2_SIZE</b> returns the size of an example.
</li>
<li>
<b>TRIANGULATION_ORDER3_NEIGHBOR_TRIANGLES</b> determines triangle neighbors.
</li>
<li>
<b>TRIANGULATION_ORDER6_ADJ_COUNT</b> counts adjacencies in a triangulation.
</li>
<li>
<b>TRIANGULATION_ORDER6_ADJ_SET</b> sets adjacencies in a triangulation.
</li>
<li>
<b>TRIANGULATION_ORDER6_EXAMPLE2</b> returns an example triangulation.
</li>
<li>
<b>TRIANGULATION_ORDER6_EXAMPLE2_SIZE</b> returns the size of an example.
</li>
<li>
<b>TRIANGULATION_ORDER6_NEIGHBOR_TRIANGLES</b> determines triangle neighbors.
</li>
</ul>
</p>
<p>
You can go up one level to <a href = "../f_src.html">
the FORTRAN90 source codes</a>.
</p>
<hr>
<i>
Last revised on 03 January 2007.
</i>
<!-- John Burkardt -->
</body>
<!-- Initial HTML skeleton created by HTMLINDEX. -->
</html>