forked from Nexus-TYF/WBMatrix
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathRGEMethod_test.c
329 lines (315 loc) · 8.73 KB
/
RGEMethod_test.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
//Reverse Gaussian elimination
#include "WBMatrix/WBMatrix.h"
#include <time.h>
#include <stdlib.h>
#include <stdio.h>
#ifdef __GNUC__
#include <x86intrin.h>
#endif
#ifdef _MSC_VER
#include <intrin.h>
#endif
#pragma intrinsic(__rdtsc)
//Repeat test times and calculate on average for accuracy
#define TEST 100000
int randseed;
//CPU cycles set start;
uint64_t start_rdtsc()
{
return __rdtsc();
}
//CPU cycles set end;
uint64_t end_rdtsc()
{
return __rdtsc();
}
void InvTMatM4(M4 *Mat)//generate 4 * 4 invertible matrix
{
int i, j;
int cus_randomAdd;
int cus_randomExc;
uint8_t temp;
identityM4(Mat);
InitRandom((randseed++) ^ time(NULL));
for(i = 3; i >= 0; i--)
{
for(j = 0; j < 4; j++)//Add
{
if(j != i)
{
cus_randomAdd = cus_random()%2;
if(cus_randomAdd) (*Mat).M[j] ^= (*Mat).M[i];
}
}
if(i < 3)//Exchange
{
cus_randomExc = i + 1 + cus_random()%(3 - i);
temp = (*Mat).M[i];
(*Mat).M[i] = (*Mat).M[cus_randomExc];
(*Mat).M[cus_randomExc] = temp;
}
}
}
void InvTMatM8(M8 *Mat)//generate 8 * 8 invertible matrix
{
int i, j;
int cus_randomAdd;
int cus_randomExc;
uint8_t temp;
identityM8(Mat);
InitRandom((randseed++) ^ time(NULL));
for(i = 7; i >= 0; i--)
{
for(j = 0; j < 8; j++)//Add
{
if(j != i)
{
cus_randomAdd = cus_random()%2;
if(cus_randomAdd) (*Mat).M[j] ^= (*Mat).M[i];
}
}
if(i < 7)//Exchange
{
cus_randomExc = i + 1 + cus_random()%(7 - i);
temp = (*Mat).M[i];
(*Mat).M[i] = (*Mat).M[cus_randomExc];
(*Mat).M[cus_randomExc] = temp;
}
}
}
void InvTMatM16(M16 *Mat)//generate 16 * 16 invertible matrix
{
int i, j;
int cus_randomAdd;
int cus_randomExc;
uint16_t temp;
identityM16(Mat);
InitRandom((randseed++) ^ time(NULL));
for(i = 15; i >= 0; i--)
{
for(j = 0; j < 16; j++)//Add
{
if(j != i)
{
cus_randomAdd = cus_random()%2;
if(cus_randomAdd) (*Mat).M[j] ^= (*Mat).M[i];
}
}
if(i < 15)//Exchange
{
cus_randomExc = i + 1 + cus_random()%(15 - i);
temp = (*Mat).M[i];
(*Mat).M[i] = (*Mat).M[cus_randomExc];
(*Mat).M[cus_randomExc] = temp;
}
}
}
void InvTMatM32(M32 *Mat)//generate 32 * 32 invertible matrix
{
int i, j;
int cus_randomAdd;
int cus_randomExc;
uint32_t temp;
identityM32(Mat);
InitRandom((randseed++) ^ time(NULL));
for(i = 31; i >= 0; i--)
{
for(j = 0; j < 32; j++)//Add
{
if(j != i)
{
cus_randomAdd = cus_random()%2;
if(cus_randomAdd) (*Mat).M[j] ^= (*Mat).M[i];
}
}
if(i < 31)//Exchange
{
cus_randomExc = i + 1 + cus_random()%(31 - i);
temp = (*Mat).M[i];
(*Mat).M[i] = (*Mat).M[cus_randomExc];
(*Mat).M[cus_randomExc] = temp;
}
}
}
void InvTMatM64(M64 *Mat)//generate 64 * 64 invertible matrix
{
int i, j;
int cus_randomAdd;
int cus_randomExc;
uint64_t temp;
identityM64(Mat);
InitRandom((randseed++) ^ time(NULL));
for(i = 63; i >= 0; i--)
{
for(j = 0; j < 64; j++)//Add
{
if(j != i)
{
cus_randomAdd = cus_random()%2;
if(cus_randomAdd) (*Mat).M[j] ^= (*Mat).M[i];
}
}
if(i < 63)//Exchange
{
cus_randomExc = i + 1 + cus_random()%(63 - i);
temp = (*Mat).M[i];
(*Mat).M[i] = (*Mat).M[cus_randomExc];
(*Mat).M[cus_randomExc] = temp;
}
}
}
void InvTMatM128(M128 *Mat)//generate 128*128 invertible matrix
{
int i, j;
int cus_randomAdd;
int cus_randomExc;
uint64_t temp[2];
identityM128(Mat);
InitRandom((randseed++) ^ time(NULL));
for(i = 127; i >= 0; i--)
{
for(j = 0; j < 128; j++)//Add
{
if(j != i)
{
cus_randomAdd = cus_random()%2;
if(cus_randomAdd)
{
(*Mat).M[j][0] ^= (*Mat).M[i][0];
(*Mat).M[j][1] ^= (*Mat).M[i][1];
}
}
}
if(i < 127)//Exchange
{
cus_randomExc = i + 1 + cus_random()%(127 - i);
temp[0] = (*Mat).M[i][0];
temp[1] = (*Mat).M[i][1];
(*Mat).M[i][0] = (*Mat).M[cus_randomExc][0];
(*Mat).M[i][1] = (*Mat).M[cus_randomExc][1];
(*Mat).M[cus_randomExc][0] = temp[0];
(*Mat).M[cus_randomExc][1] = temp[1];
}
}
}
void InvTMatM256(M256 *Mat)//generate 256*256 invertible matrix
{
int i, j;
int cus_randomAdd;
int cus_randomExc;
uint64_t temp[4];
identityM256(Mat);
InitRandom((randseed++) ^ time(NULL));
for(i = 255; i >= 0; i--)
{
for(j = 0; j < 256; j++)//Add
{
if(j != i)
{
cus_randomAdd = cus_random()%2;
if(cus_randomAdd)
{
(*Mat).M[j][0] ^= (*Mat).M[i][0];
(*Mat).M[j][1] ^= (*Mat).M[i][1];
(*Mat).M[j][2] ^= (*Mat).M[i][2];
(*Mat).M[j][3] ^= (*Mat).M[i][3];
}
}
}
if(i < 255)//Exchange
{
cus_randomExc = i + 1 + cus_random()%(255 - i);
temp[0] = (*Mat).M[i][0];
temp[1] = (*Mat).M[i][1];
temp[2] = (*Mat).M[i][2];
temp[3] = (*Mat).M[i][3];
(*Mat).M[i][0] = (*Mat).M[cus_randomExc][0];
(*Mat).M[i][1] = (*Mat).M[cus_randomExc][1];
(*Mat).M[i][2] = (*Mat).M[cus_randomExc][2];
(*Mat).M[i][3] = (*Mat).M[cus_randomExc][3];
(*Mat).M[cus_randomExc][0] = temp[0];
(*Mat).M[cus_randomExc][1] = temp[1];
(*Mat).M[cus_randomExc][2] = temp[2];
(*Mat).M[cus_randomExc][3] = temp[3];
}
}
}
int main()
{
uint64_t begin;
uint64_t end;
uint64_t ans = 0;
int i;
printf("Reverse Gussian Elimination Method performance test:\n");
M4 Tm4, Sm4;
begin = start_rdtsc();
for (i = 0; i < TEST; i++)
{
InvTMatM4(&Tm4);
invsM4(Tm4, &Sm4);
}
end = end_rdtsc();
ans = (end - begin);
printf("generate 4 * 4 matrix and its inverse matirx cost %llu CPU cycles\n", (ans) / TEST);
M8 Tm8, Sm8;
begin = start_rdtsc();
for (i = 0; i < TEST; i++)
{
InvTMatM8(&Tm8);
invsM8(Tm8, &Sm8);
}
end = end_rdtsc();
ans = (end - begin);
printf("generate 8 * 8 matrix and its inverse matirx cost %llu CPU cycles\n", (ans) / TEST);
M16 Tm16, Sm16;
begin = start_rdtsc();
for (i = 0; i < TEST; i++)
{
InvTMatM16(&Tm16);
invsM16(Tm16, &Sm16);
}
end = end_rdtsc();
ans = (end - begin);
printf("generate 16 * 16 matrix and its inverse matirx cost %llu CPU cycles\n", (ans) / TEST);
M32 Tm32, Sm32;
begin = start_rdtsc();
for (i = 0; i < TEST; i++)
{
InvTMatM32(&Tm32);
invsM32(Tm32, &Sm32);
}
end = end_rdtsc();
ans = (end - begin);
printf("generate 32 * 32 matrix and its inverse matirx cost %llu CPU cycles\n", (ans) / TEST);
M64 Tm64, Sm64;
begin = start_rdtsc();
for (i = 0; i < TEST; i++)
{
InvTMatM64(&Tm64);
invsM64(Tm64, &Sm64);
}
end = end_rdtsc();
ans = (end - begin);
printf("generate 64 * 64 matrix and its inverse matirx cost %llu CPU cycles\n", (ans) / TEST);
M128 Tm128, Sm128;
begin = start_rdtsc();
for (i = 0; i < TEST; i++)
{
InvTMatM128(&Tm128);
invsM128(Tm128, &Sm128);
}
end = end_rdtsc();
ans = (end - begin);
printf("generate 128 * 128 matrix and its inverse matirx cost %llu CPU cycles\n", (ans) / TEST);
M256 Tm256, Sm256;
begin = start_rdtsc();
for (i = 0; i < TEST; i++)
{
InvTMatM256(&Tm256);
invsM256(Tm256, &Sm256);
}
end = end_rdtsc();
ans = (end - begin);
printf("generate 256 * 256 matrix and its inverse matirx cost %llu CPU cycles\n", (ans) / TEST);
return 0;
}