-
Notifications
You must be signed in to change notification settings - Fork 771
/
Copy pathda.py
137 lines (120 loc) · 4.96 KB
/
da.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
"""
Denoising Autoencoder (DA)
author: Ye Hu
2016/12/16
"""
import os
import timeit
import numpy as np
import tensorflow as tf
from PIL import Image
import input_data
from utils import tile_raster_images
class DA(object):
"""A denoising autoencoder class (using tied weight)"""
def __init__(self, inpt, n_visiable=784, n_hidden=500, W=None, bhid=None,
bvis=None, activation=tf.nn.sigmoid):
"""
inpt: tf.Tensor, the input
:param n_visiable: int, number of hidden units
:param n_hidden: int, number of visable units
:param W, bhid, bvis: tf.Tensor, the weight, bias tensor
"""
self.n_visiable = n_visiable
self.n_hidden = n_hidden
# initialize the weight and bias if not given
if W is None:
bound = -4*np.sqrt(6.0 / (self.n_hidden + self.n_visiable))
W = tf.Variable(tf.random_uniform([self.n_visiable, self.n_hidden], minval=-bound,
maxval=bound), dtype=tf.float32)
if bhid is None:
bhid = tf.Variable(tf.zeros([n_hidden,]), dtype=tf.float32)
if bvis is None:
bvis = tf.Variable(tf.zeros([n_visiable,]), dtype=tf.float32)
self.W = W
self.b = bhid
# reconstruct params
self.b_prime = bvis
self.W_prime = tf.transpose(self.W)
# keep track of input and params
self.input = inpt
self.params = [self.W, self.b, self.b_prime]
# activation
self.activation = activation
def get_encode_values(self, inpt):
"""Compute the encode values"""
return self.activation(tf.matmul(inpt, self.W) + self.b)
def get_decode_values(self, encode_input):
"""Get the reconstructed values"""
return self.activation(tf.matmul(encode_input, self.W_prime) + self.b_prime)
def get_corrupted_input(self, inpt, corruption_level):
"""
Randomly zero the element of input
corruption_level: float, (0,1]
"""
# the shape of input
input_shape = tf.shape(inpt)
# the probablity for corruption
probs = tf.tile(tf.log([[corruption_level, 1-corruption_level]]),
multiples=[input_shape[0], 1])
return tf.mul(tf.cast(tf.multinomial(probs, num_samples=input_shape[1]),
dtype=tf.float32), inpt)
def get_cost(self, corruption_level=0.3):
"""Get the cost for training"""
corrupted_input = self.get_corrupted_input(self.input, corruption_level)
encode_output = self.get_encode_values(corrupted_input)
decode_output = self.get_decode_values(encode_output)
# use cross_entropy
cross = tf.mul(self.input, tf.log(decode_output)) + \
tf.mul(1.0-self.input, tf.log(1.0-decode_output))
cost = -tf.reduce_mean(tf.reduce_sum(cross, axis=1))
return cost
if __name__ == "__main__":
# mnist examples
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
# define input
x = tf.placeholder(tf.float32, shape=[None, 784])
# set random_seed
tf.set_random_seed(seed=99999)
# the DA model
da = DA(x, n_visiable=784, n_hidden=500)
# corruption level
corruption_level = 0.0
learning_rate = 0.1
cost = da.get_cost(corruption_level)
params = da.params
train_op = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost, var_list=params)
init = tf.global_variables_initializer()
output_folder = "dA_plots"
if not os.path.isdir(output_folder):
os.makedirs(output_folder)
os.chdir(output_folder)
training_epochs = 10
batch_size = 100
display_step = 1
print("Start training...")
start_time = timeit.default_timer()
with tf.Session() as sess:
sess.run(init)
for epoch in range(training_epochs):
avg_cost = 0.0
batch_num = int(mnist.train.num_examples / batch_size)
for i in range(batch_num):
x_batch, _ = mnist.train.next_batch(batch_size)
# 训练
sess.run(train_op, feed_dict={x: x_batch})
# 计算cost
avg_cost += sess.run(cost, feed_dict={x: x_batch,}) / batch_num
# 输出
if epoch % display_step == 0:
print("Epoch {0} cost: {1}".format(epoch, avg_cost))
end_time = timeit.default_timer()
training_time = end_time - start_time
print("Finished!")
print(" The {0}%% corruption code ran for {1}.".format(corruption_level*100, training_time/60,))
W_value = sess.run(da.W_prime)
image = Image.fromarray(tile_raster_images(
X=W_value,
img_shape=(28, 28), tile_shape=(10, 10),
tile_spacing=(1, 1)))
image.save('filters_corruption_{0}.png'.format(int(corruption_level*100)))