-
Notifications
You must be signed in to change notification settings - Fork 771
/
Copy pathShuffleNet.py
122 lines (112 loc) · 4.73 KB
/
ShuffleNet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
"""
implement a shuffleNet by pytorch
"""
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
dtype = torch.FloatTensor
def shuffle_channels(x, groups):
"""shuffle channels of a 4-D Tensor"""
batch_size, channels, height, width = x.size()
assert channels % groups == 0
channels_per_group = channels // groups
# split into groups
x = x.view(batch_size, groups, channels_per_group,
height, width)
# transpose 1, 2 axis
x = x.transpose(1, 2).contiguous()
# reshape into orignal
x = x.view(batch_size, channels, height, width)
return x
class ShuffleNetUnitA(nn.Module):
"""ShuffleNet unit for stride=1"""
def __init__(self, in_channels, out_channels, groups=3):
super(ShuffleNetUnitA, self).__init__()
assert in_channels == out_channels
assert out_channels % 4 == 0
bottleneck_channels = out_channels // 4
self.groups = groups
self.group_conv1 = nn.Conv2d(in_channels, bottleneck_channels,
1, groups=groups, stride=1)
self.bn2 = nn.BatchNorm2d(bottleneck_channels)
self.depthwise_conv3 = nn.Conv2d(bottleneck_channels,
bottleneck_channels,
3, padding=1, stride=1,
groups=bottleneck_channels)
self.bn4 = nn.BatchNorm2d(bottleneck_channels)
self.group_conv5 = nn.Conv2d(bottleneck_channels, out_channels,
1, stride=1, groups=groups)
self.bn6 = nn.BatchNorm2d(out_channels)
def forward(self, x):
out = self.group_conv1(x)
out = F.relu(self.bn2(out))
out = shuffle_channels(out, groups=self.groups)
out = self.depthwise_conv3(out)
out = self.bn4(out)
out = self.group_conv5(out)
out = self.bn6(out)
out = F.relu(x + out)
return out
class ShuffleNetUnitB(nn.Module):
"""ShuffleNet unit for stride=2"""
def __init__(self, in_channels, out_channels, groups=3):
super(ShuffleNetUnitB, self).__init__()
out_channels -= in_channels
assert out_channels % 4 == 0
bottleneck_channels = out_channels // 4
self.groups = groups
self.group_conv1 = nn.Conv2d(in_channels, bottleneck_channels,
1, groups=groups, stride=1)
self.bn2 = nn.BatchNorm2d(bottleneck_channels)
self.depthwise_conv3 = nn.Conv2d(bottleneck_channels,
bottleneck_channels,
3, padding=1, stride=2,
groups=bottleneck_channels)
self.bn4 = nn.BatchNorm2d(bottleneck_channels)
self.group_conv5 = nn.Conv2d(bottleneck_channels, out_channels,
1, stride=1, groups=groups)
self.bn6 = nn.BatchNorm2d(out_channels)
def forward(self, x):
out = self.group_conv1(x)
out = F.relu(self.bn2(out))
out = shuffle_channels(out, groups=self.groups)
out = self.depthwise_conv3(out)
out = self.bn4(out)
out = self.group_conv5(out)
out = self.bn6(out)
x = F.avg_pool2d(x, 3, stride=2, padding=1)
out = F.relu(torch.cat([x, out], dim=1))
return out
class ShuffleNet(nn.Module):
"""ShuffleNet for groups=3"""
def __init__(self, groups=3, in_channels=3, num_classes=1000):
super(ShuffleNet, self).__init__()
self.conv1 = nn.Conv2d(in_channels, 24, 3, stride=2, padding=1)
stage2_seq = [ShuffleNetUnitB(24, 240, groups=3)] + \
[ShuffleNetUnitA(240, 240, groups=3) for i in range(3)]
self.stage2 = nn.Sequential(*stage2_seq)
stage3_seq = [ShuffleNetUnitB(240, 480, groups=3)] + \
[ShuffleNetUnitA(480, 480, groups=3) for i in range(7)]
self.stage3 = nn.Sequential(*stage3_seq)
stage4_seq = [ShuffleNetUnitB(480, 960, groups=3)] + \
[ShuffleNetUnitA(960, 960, groups=3) for i in range(3)]
self.stage4 = nn.Sequential(*stage4_seq)
self.fc = nn.Linear(960, num_classes)
def forward(self, x):
net = self.conv1(x)
net = F.max_pool2d(net, 3, stride=2, padding=1)
net = self.stage2(net)
net = self.stage3(net)
net = self.stage4(net)
net = F.avg_pool2d(net, 7)
net = net.view(net.size(0), -1)
net = self.fc(net)
logits = F.softmax(net)
return logits
if __name__ == "__main__":
x = Variable(torch.randn([32, 3, 224, 224]).type(dtype),
requires_grad=False)
shuffleNet = ShuffleNet()
out = shuffleNet(x)
print(out.size())