-
Notifications
You must be signed in to change notification settings - Fork 53
/
train_seq.py
72 lines (54 loc) · 2.52 KB
/
train_seq.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
import functools
import tensorflow as tf
from core import trainer_seq, input_reader
from core.model_builder import build_man_model
from google.protobuf import text_format
from object_detection.builders import input_reader_builder
from object_detection.protos import input_reader_pb2
from object_detection.protos import model_pb2
from object_detection.protos import pipeline_pb2
from object_detection.protos import train_pb2
import os
os.environ["CUDA_VISIBLE_DEVICES"]="1"
tf.logging.set_verbosity(tf.logging.INFO)
flags = tf.app.flags
flags.DEFINE_string('train_dir', 'model/ssd_mobilenet_video1/',
'Directory to save the checkpoints and training summaries.')
flags.DEFINE_string('pipeline_config_path', 'model/ssd_mobilenet_video.config',
'Path to a pipeline_pb2.TrainEvalPipelineConfig config '
'file. If provided, other configs are ignored')
flags.DEFINE_string('train_config_path', '',
'Path to a train_pb2.TrainConfig config file.')
flags.DEFINE_string('input_config_path', '',
'Path to an input_reader_pb2.InputReader config file.')
flags.DEFINE_string('model_config_path', '',
'Path to a model_pb2.DetectionModel config file.')
flags.DEFINE_string('image_root', '/media/2TB/Research/DataSet/ILSVRC2015/Data/VID/train/',
'Root path to input images')
FLAGS = flags.FLAGS
def get_configs_from_pipeline_file():
"""Reads training configuration from a pipeline_pb2.TrainEvalPipelineConfig.
Reads training config from file specified by pipeline_config_path flag.
Returns:
model_config: model_pb2.DetectionModel
train_config: train_pb2.TrainConfig
input_config: input_reader_pb2.InputReader
"""
pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
with tf.gfile.GFile(FLAGS.pipeline_config_path, 'r') as f:
text_format.Merge(f.read(), pipeline_config)
model_config = pipeline_config.model.ssd
train_config = pipeline_config.train_config
input_config = pipeline_config.train_input_reader
return model_config, train_config, input_config
def main(_):
model_config, train_config, input_config = get_configs_from_pipeline_file()
model_fn = functools.partial(
build_man_model,
model_config=model_config,
is_training=True)
create_input_dict_fn = functools.partial(
input_reader.read_seq, input_config)
trainer_seq.train(model_fn, create_input_dict_fn, train_config, FLAGS.train_dir, FLAGS.image_root)
if __name__ == '__main__':
tf.app.run()