forked from X-D-Lab/LangChain-ChatGLM-Webui
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathchatllm.py
165 lines (135 loc) · 6.47 KB
/
chatllm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
import os
from typing import Dict, List, Optional, Tuple, Union
import torch
from fastchat.conversation import (compute_skip_echo_len,
get_default_conv_template)
from fastchat.serve.inference import load_model as load_fastchat_model
from langchain.llms.base import LLM
from langchain.llms.utils import enforce_stop_tokens
from transformers import AutoModel, AutoModelForCausalLM, AutoTokenizer
from config import *
os.environ["TOKENIZERS_PARALLELISM"] = "false"
DEVICE = LLM_DEVICE
DEVICE_ID = "0"
CUDA_DEVICE = f"{DEVICE}:{DEVICE_ID}" if DEVICE_ID else DEVICE
init_llm = init_llm
init_embedding_model = init_embedding_model
def torch_gc():
if torch.cuda.is_available():
with torch.cuda.device(CUDA_DEVICE):
torch.cuda.empty_cache()
torch.cuda.ipc_collect()
def auto_configure_device_map(num_gpus: int) -> Dict[str, int]:
num_trans_layers = 28
per_gpu_layers = 30 / num_gpus
device_map = {
'transformer.word_embeddings': 0,
'transformer.final_layernorm': 0,
'lm_head': 0
}
used = 2
gpu_target = 0
for i in range(num_trans_layers):
if used >= per_gpu_layers:
gpu_target += 1
used = 0
assert gpu_target < num_gpus
device_map[f'transformer.layers.{i}'] = gpu_target
used += 1
return device_map
class ChatLLM(LLM):
max_token: int = 10000
temperature: float = 0.1
top_p = 0.9
history = []
model_type: str = "chatglm"
model_name_or_path: str = init_llm,
tokenizer: object = None
model: object = None
def __init__(self):
super().__init__()
@property
def _llm_type(self) -> str:
return "ChatLLM"
def _call(self, prompt: str, stop: Optional[List[str]] = None) -> str:
if self.model_type == 'vicuna':
conv = get_default_conv_template(self.model_name_or_path).copy()
conv.append_message(conv.roles[0], prompt)
conv.append_message(conv.roles[1], None)
prompt = conv.get_prompt()
inputs = self.tokenizer([prompt])
output_ids = self.model.generate(
torch.as_tensor(inputs.input_ids).cuda(),
do_sample=True,
temperature=self.temperature,
max_new_tokens=self.max_token,
)
outputs = self.tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0]
skip_echo_len = compute_skip_echo_len(self.model_name_or_path, conv, prompt)
response = outputs[skip_echo_len:]
torch_gc()
if stop is not None:
response = enforce_stop_tokens(response, stop)
self.history = [[None, response]]
elif self.model_type == 'belle':
prompt = "Human: "+ prompt +" \n\nAssistant: "
input_ids = self.tokenizer(prompt, return_tensors="pt").input_ids.to(DEVICE)
generate_ids = self.model.generate(input_ids, max_new_tokens=self.max_token, do_sample = True, top_k = 30, top_p = self.top_p, temperature = self.temperature, repetition_penalty=1., eos_token_id=2, bos_token_id=1, pad_token_id=0)
output = self.tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
response = output[len(prompt)+1:]
torch_gc()
if stop is not None:
response = enforce_stop_tokens(response, stop)
self.history = [[None, response]]
elif self.model_type == 'chatglm':
response, _ = self.model.chat(
self.tokenizer,
prompt,
history=self.history,
max_length=self.max_token,
temperature=self.temperature,
)
torch_gc()
if stop is not None:
response = enforce_stop_tokens(response, stop)
self.history = self.history + [[None, response]]
elif self.model_type == 'internlm':
response, _ = self.model.chat(self.tokenizer, prompt, history=self.history, max_length=self.max_token, temperature=self.temperature)
return response
def load_llm(self,
llm_device=DEVICE,
num_gpus='auto',
device_map: Optional[Dict[str, int]] = None,
**kwargs):
if 'chatglm' in self.model_name_or_path.lower():
self.tokenizer = AutoTokenizer.from_pretrained(self.model_name_or_path,
trust_remote_code=True, cache_dir=os.path.join(MODEL_CACHE_PATH, self.model_name_or_path))
if torch.cuda.is_available() and llm_device.lower().startswith("cuda"):
num_gpus = torch.cuda.device_count()
if num_gpus < 2 and device_map is None:
self.model = (AutoModel.from_pretrained(
self.model_name_or_path, trust_remote_code=True, cache_dir=os.path.join(MODEL_CACHE_PATH, self.model_name_or_path),
**kwargs).half().cuda())
else:
from accelerate import dispatch_model
model = AutoModel.from_pretrained(self.model_name_or_path,
trust_remote_code=True, cache_dir=os.path.join(MODEL_CACHE_PATH, self.model_name_or_path),
**kwargs).half()
if device_map is None:
device_map = auto_configure_device_map(num_gpus)
self.model = dispatch_model(model, device_map=device_map)
else:
self.model = (AutoModel.from_pretrained(
self.model_name_or_path,
trust_remote_code=True, cache_dir=os.path.join(MODEL_CACHE_PATH, self.model_name_or_path)).float().to(llm_device))
self.model = self.model.eval()
elif 'internlm' in self.model_name_or_path.lower():
self.tokenizer = AutoTokenizer.from_pretrained(self.model_name_or_path, trust_remote_code=True)
self.model = AutoModelForCausalLM.from_pretrained(self.model_name_or_path, trust_remote_code=True).cuda()
self.model = self.model.eval()
else:
self.model, self.tokenizer = load_fastchat_model(
model_path = self.model_name_or_path,
device = llm_device,
num_gpus = num_gpus
)