forked from erget/wgrib2
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpolatev0.f
executable file
·262 lines (261 loc) · 10.9 KB
/
polatev0.f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
C-----------------------------------------------------------------------
SUBROUTINE POLATEV0(IPOPT,KGDSI,KGDSO,MI,MO,KM,IBI,LI,UI,VI,
& NO,RLAT,RLON,CROT,SROT,IBO,LO,UO,VO,IRET)
C$$$ SUBPROGRAM DOCUMENTATION BLOCK
C
C SUBPROGRAM: POLATEV0 INTERPOLATE VECTOR FIELDS (BILINEAR)
C PRGMMR: IREDELL ORG: W/NMC23 DATE: 96-04-10
C
C ABSTRACT: THIS SUBPROGRAM PERFORMS BILINEAR INTERPOLATION
C FROM ANY GRID TO ANY GRID FOR VECTOR FIELDS.
C OPTIONS ALLOW VARYING THE MINIMUM PERCENTAGE FOR MASK,
C I.E. PERCENT VALID INPUT DATA REQUIRED TO MAKE OUTPUT DATA,
C (IPOPT(1)) WHICH DEFAULTS TO 50 (IF IPOPT(1)=-1).
C ONLY HORIZONTAL INTERPOLATION IS PERFORMED.
C THE GRIDS ARE DEFINED BY THEIR GRID DESCRIPTION SECTIONS
C (PASSED IN INTEGER FORM AS DECODED BY SUBPROGRAM W3FI63).
C THE CURRENT CODE RECOGNIZES THE FOLLOWING PROJECTIONS:
C (KGDS(1)=000) EQUIDISTANT CYLINDRICAL
C (KGDS(1)=001) MERCATOR CYLINDRICAL
C (KGDS(1)=003) LAMBERT CONFORMAL CONICAL
C (KGDS(1)=004) GAUSSIAN CYLINDRICAL (SPECTRAL NATIVE)
C (KGDS(1)=005) POLAR STEREOGRAPHIC AZIMUTHAL
C (KGDS(1)=202) ROTATED EQUIDISTANT CYLINDRICAL (ETA NATIVE)
C WHERE KGDS COULD BE EITHER INPUT KGDSI OR OUTPUT KGDSO.
C THE INPUT AND OUTPUT VECTORS ARE ROTATED SO THAT THEY ARE
C EITHER RESOLVED RELATIVE TO THE DEFINED GRID
C IN THE DIRECTION OF INCREASING X AND Y COORDINATES
C OR RESOLVED RELATIVE TO EASTERLY AND NORTHERLY DIRECTIONS,
C AS DESIGNATED BY THEIR RESPECTIVE GRID DESCRIPTION SECTIONS.
C AS AN ADDED BONUS THE NUMBER OF OUTPUT GRID POINTS
C AND THEIR LATITUDES AND LONGITUDES ARE ALSO RETURNED
C ALONG WITH THEIR VECTOR ROTATION PARAMETERS.
C ON THE OTHER HAND, THE OUTPUT CAN BE A SET OF STATION POINTS
C IF KGDSO(1)<0, IN WHICH CASE THE NUMBER OF POINTS
C AND THEIR LATITUDES AND LONGITUDES MUST BE INPUT
C ALONG WITH THEIR VECTOR ROTATION PARAMETERS.
C INPUT BITMAPS WILL BE INTERPOLATED TO OUTPUT BITMAPS.
C OUTPUT BITMAPS WILL ALSO BE CREATED WHEN THE OUTPUT GRID
C EXTENDS OUTSIDE OF THE DOMAIN OF THE INPUT GRID.
C THE OUTPUT FIELD IS SET TO 0 WHERE THE OUTPUT BITMAP IS OFF.
C
C PROGRAM HISTORY LOG:
C 96-04-10 IREDELL
C 1999-04-08 IREDELL SPLIT IJKGDS INTO TWO PIECES
C 2001-06-18 IREDELL INCLUDE MINIMUM MASK PERCENTAGE OPTION
C 2002-01-17 IREDELL SAVE DATA FROM LAST CALL FOR OPTIMIZATION
C 2007-05-22 IREDELL EXTRAPOLATE UP TO HALF A GRID CELL
C 2007-10-30 IREDELL SAVE WEIGHTS AND THREAD FOR PERFORMANCE
C
C USAGE: CALL POLATEV0(IPOPT,KGDSI,KGDSO,MI,MO,KM,IBI,LI,UI,VI,
C & NO,RLAT,RLON,CROT,SROT,IBO,LO,UO,VO,IRET)
C
C INPUT ARGUMENT LIST:
C IPOPT - INTEGER (20) INTERPOLATION OPTIONS
C IPOPT(1) IS MINIMUM PERCENTAGE FOR MASK
C (DEFAULTS TO 50 IF IPOPT(1)=-1)
C KGDSI - INTEGER (200) INPUT GDS PARAMETERS AS DECODED BY W3FI63
C KGDSO - INTEGER (200) OUTPUT GDS PARAMETERS
C (KGDSO(1)<0 IMPLIES RANDOM STATION POINTS)
C MI - INTEGER SKIP NUMBER BETWEEN INPUT GRID FIELDS IF KM>1
C OR DIMENSION OF INPUT GRID FIELDS IF KM=1
C MO - INTEGER SKIP NUMBER BETWEEN OUTPUT GRID FIELDS IF KM>1
C OR DIMENSION OF OUTPUT GRID FIELDS IF KM=1
C KM - INTEGER NUMBER OF FIELDS TO INTERPOLATE
C IBI - INTEGER (KM) INPUT BITMAP FLAGS
C LI - LOGICAL*1 (MI,KM) INPUT BITMAPS (IF SOME IBI(K)=1)
C UI - REAL (MI,KM) INPUT U-COMPONENT FIELDS TO INTERPOLATE
C VI - REAL (MI,KM) INPUT V-COMPONENT FIELDS TO INTERPOLATE
C NO - INTEGER NUMBER OF OUTPUT POINTS (ONLY IF KGDSO(1)<0)
C RLAT - REAL (NO) OUTPUT LATITUDES IN DEGREES (IF KGDSO(1)<0)
C RLON - REAL (NO) OUTPUT LONGITUDES IN DEGREES (IF KGDSO(1)<0)
C CROT - REAL (NO) VECTOR ROTATION COSINES (IF KGDSO(1)<0)
C SROT - REAL (NO) VECTOR ROTATION SINES (IF KGDSO(1)<0)
C (UGRID=CROT*UEARTH-SROT*VEARTH;
C VGRID=SROT*UEARTH+CROT*VEARTH)
C
C OUTPUT ARGUMENT LIST:
C NO - INTEGER NUMBER OF OUTPUT POINTS (ONLY IF KGDSO(1)>=0)
C RLAT - REAL (MO) OUTPUT LATITUDES IN DEGREES (IF KGDSO(1)>=0)
C RLON - REAL (MO) OUTPUT LONGITUDES IN DEGREES (IF KGDSO(1)>=0)
C CROT - REAL (NO) VECTOR ROTATION COSINES (IF KGDSO(1)>=0)
C SROT - REAL (NO) VECTOR ROTATION SINES (IF KGDSO(1)>=0)
C (UGRID=CROT*UEARTH-SROT*VEARTH;
C VGRID=SROT*UEARTH+CROT*VEARTH)
C IBO - INTEGER (KM) OUTPUT BITMAP FLAGS
C LO - LOGICAL*1 (MO,KM) OUTPUT BITMAPS (ALWAYS OUTPUT)
C UO - REAL (MO,KM) OUTPUT U-COMPONENT FIELDS INTERPOLATED
C VO - REAL (MO,KM) OUTPUT V-COMPONENT FIELDS INTERPOLATED
C IRET - INTEGER RETURN CODE
C 0 SUCCESSFUL INTERPOLATION
C 2 UNRECOGNIZED INPUT GRID OR NO GRID OVERLAP
C 3 UNRECOGNIZED OUTPUT GRID
C
C SUBPROGRAMS CALLED:
C GDSWIZ GRID DESCRIPTION SECTION WIZARD
C IJKGDS0 SET UP PARAMETERS FOR IJKGDS1
C (IJKGDS1) RETURN FIELD POSITION FOR A GIVEN GRID POINT
C (MOVECT) MOVE A VECTOR ALONG A GREAT CIRCLE
C POLFIXV MAKE MULTIPLE POLE VECTOR VALUES CONSISTENT
C
C ATTRIBUTES:
C LANGUAGE: FORTRAN 77
C
C$$$
IMPLICIT NONE
INTEGER,INTENT(IN):: IPOPT(20),KGDSI(200),KGDSO(200),MI,MO,KM
INTEGER,INTENT(IN):: IBI(KM)
LOGICAL*1,INTENT(IN):: LI(MI,KM)
REAL,INTENT(IN):: UI(MI,KM),VI(MI,KM)
INTEGER,INTENT(INOUT):: NO
REAL,INTENT(INOUT):: RLAT(MO),RLON(MO),CROT(MO),SROT(MO)
INTEGER,INTENT(OUT):: IBO(KM)
LOGICAL*1,INTENT(OUT):: LO(MO,KM)
REAL,INTENT(OUT):: UO(MO,KM),VO(MO,KM)
INTEGER,INTENT(OUT):: IRET
REAL XPTS(MO),YPTS(MO)
INTEGER IJX(2),IJY(2)
REAL WX(2),WY(2)
INTEGER IJKGDSA(20)
REAL,PARAMETER:: FILL=-9999.
INTEGER MP,N,I,J,K,NK,NV,IJKGDS1
REAL PMP,XIJ,YIJ,XF,YF,U,V,W,DUM
REAL XPTI(MI),YPTI(MI),RLOI(MI),RLAI(MI),CROI(MI),SROI(MI)
REAL CM,SM,UROT,VROT
INTEGER,SAVE:: KGDSIX(200)=-1,KGDSOX(200)=-1,NOX=-1,IRETX=-1
INTEGER,ALLOCATABLE,SAVE:: NXY(:,:,:)
REAL,ALLOCATABLE,SAVE:: RLATX(:),RLONX(:),CROTX(:),SROTX(:)
REAL,ALLOCATABLE,SAVE:: WXY(:,:,:),CXY(:,:,:),SXY(:,:,:)
C - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
C SET PARAMETERS
IRET=0
MP=IPOPT(1)
IF(MP.EQ.-1.OR.MP.EQ.0) MP=50
IF(MP.LT.0.OR.MP.GT.100) IRET=32
PMP=MP*0.01
C - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
C SAVE OR SKIP WEIGHT COMPUTATION
IF(IRET.EQ.0.AND.(KGDSO(1).LT.0.OR.
& ANY(KGDSI.NE.KGDSIX).OR.ANY(KGDSO.NE.KGDSOX))) THEN
C - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
C COMPUTE NUMBER OF OUTPUT POINTS AND THEIR LATITUDES AND LONGITUDES.
IF(KGDSO(1).GE.0) THEN
CALL GDSWIZ(KGDSO, 0,MO,FILL,XPTS,YPTS,RLON,RLAT,NO,
& 1,CROT,SROT)
IF(NO.EQ.0) IRET=3
ENDIF
C - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
C LOCATE INPUT POINTS
CALL GDSWIZ(KGDSI,-1,NO,FILL,XPTS,YPTS,RLON,RLAT,NV,0,DUM,DUM)
IF(IRET.EQ.0.AND.NV.EQ.0) IRET=2
CALL GDSWIZ(KGDSI, 0,MI,FILL,XPTI,YPTI,RLOI,RLAI,NV,1,CROI,SROI)
C - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
C ALLOCATE AND SAVE GRID DATA
KGDSIX=KGDSI
KGDSOX=KGDSO
IF(NOX.NE.NO) THEN
IF(NOX.GE.0) DEALLOCATE(RLATX,RLONX,CROTX,SROTX,
& NXY,WXY,CXY,SXY)
ALLOCATE(RLATX(NO),RLONX(NO),CROTX(NO),SROTX(NO),
& NXY(2,2,NO),WXY(2,2,NO),CXY(2,2,NO),SXY(2,2,NO))
NOX=NO
ENDIF
IRETX=IRET
C - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
C COMPUTE WEIGHTS
IF(IRET.EQ.0) THEN
CALL IJKGDS0(KGDSI,IJKGDSA)
C$OMP PARALLEL DO
C$OMP&PRIVATE(N,XIJ,YIJ,IJX,IJY,XF,YF,J,I,WX,WY,CM,SM)
DO N=1,NO
RLONX(N)=RLON(N)
RLATX(N)=RLAT(N)
CROTX(N)=CROT(N)
SROTX(N)=SROT(N)
XIJ=XPTS(N)
YIJ=YPTS(N)
IF(XIJ.NE.FILL.AND.YIJ.NE.FILL) THEN
IJX(1:2)=FLOOR(XIJ)+(/0,1/)
IJY(1:2)=FLOOR(YIJ)+(/0,1/)
XF=XIJ-IJX(1)
YF=YIJ-IJY(1)
WX(1)=(1-XF)
WX(2)=XF
WY(1)=(1-YF)
WY(2)=YF
DO J=1,2
DO I=1,2
NXY(I,J,N)=IJKGDS1(IJX(I),IJY(J),IJKGDSA)
WXY(I,J,N)=WX(I)*WY(J)
IF(NXY(I,J,N).GT.0) THEN
CALL MOVECT(RLAI(NXY(I,J,N)),RLOI(NXY(I,J,N)),
& RLAT(N),RLON(N),CM,SM)
CXY(I,J,N)=CM*CROI(NXY(I,J,N))+SM*SROI(NXY(I,J,N))
SXY(I,J,N)=SM*CROI(NXY(I,J,N))-CM*SROI(NXY(I,J,N))
ENDIF
ENDDO
ENDDO
ELSE
NXY(:,:,N)=0
ENDIF
ENDDO
ENDIF
ENDIF
C - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
C INTERPOLATE OVER ALL FIELDS
IF(IRET.EQ.0.AND.IRETX.EQ.0) THEN
IF(KGDSO(1).GE.0) THEN
NO=NOX
DO N=1,NO
RLON(N)=RLONX(N)
RLAT(N)=RLATX(N)
CROT(N)=CROTX(N)
SROT(N)=SROTX(N)
ENDDO
ENDIF
C$OMP PARALLEL DO
C$OMP&PRIVATE(NK,K,N,U,V,W,UROT,VROT,J,I)
DO NK=1,NO*KM
K=(NK-1)/NO+1
N=NK-NO*(K-1)
U=0
V=0
W=0
DO J=1,2
DO I=1,2
IF(NXY(I,J,N).GT.0) THEN
IF (IBI(K).EQ.0.OR.LI(NXY(I,J,N),K)) THEN
UROT=CXY(I,J,N)*UI(NXY(I,J,N),K)-
& SXY(I,J,N)*VI(NXY(I,J,N),K)
VROT=SXY(I,J,N)*UI(NXY(I,J,N),K)+
& CXY(I,J,N)*VI(NXY(I,J,N),K)
U=U+WXY(I,J,N)*UROT
V=V+WXY(I,J,N)*VROT
W=W+WXY(I,J,N)
ENDIF
ENDIF
ENDDO
ENDDO
LO(N,K)=W.GE.PMP
IF(LO(N,K)) THEN
UROT=CROT(N)*U-SROT(N)*V
VROT=SROT(N)*U+CROT(N)*V
UO(N,K)=UROT/W
VO(N,K)=VROT/W
ELSE
UO(N,K)=0.
VO(N,K)=0.
ENDIF
ENDDO
DO K=1,KM
IBO(K)=IBI(K)
IF(.NOT.ALL(LO(1:NO,K))) IBO(K)=1
ENDDO
IF(KGDSO(1).EQ.0) CALL POLFIXV(NO,MO,KM,RLAT,RLON,IBO,LO,UO,VO)
C - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
ELSE
IF(IRET.EQ.0) IRET=IRETX
IF(KGDSO(1).GE.0) NO=0
ENDIF
C - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
END