forked from erget/wgrib2
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpolateg4.f
236 lines (236 loc) · 9.19 KB
/
polateg4.f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
C-----------------------------------------------------------------------
SUBROUTINE POLATEG4(IPOPT,KGDSI,KGDSO,MI,MO,KM,IBI,LI,GI,
& NO,RLAT,RLON,CROT,SROT,IBO,LO,XO,YO,IRET)
C$$$ SUBPROGRAM DOCUMENTATION BLOCK
C
C SUBPROGRAM: POLATEG4 INTERPOLATE SCALAR FIELD GRADIENTS (SPECTRAL)
C PRGMMR: IREDELL ORG: W/NMC23 DATE: 96-04-10
C
C ABSTRACT: THIS SUBPROGRAM PERFORMS SPECTRAL INTERPOLATION
C FROM ANY GRID TO ANY GRID FOR SCALAR FIELDS,
C RETURNING THEIR VECTOR GRADIENTS.
C IT REQUIRES THAT THE INPUT FIELDS BE UNIFORMLY GLOBAL.
C OPTIONS ALLOW CHOICES BETWEEN TRIANGULAR SHAPE (IPOPT(1)=0)
C AND RHOMBOIDAL SHAPE (IPOPT(1)=1) WHICH HAS NO DEFAULT;
C A SECOND OPTION IS THE TRUNCATION (IPOPT(2)) WHICH DEFAULTS
C TO A SENSIBLE TRUNCATION FOR THE INPUT GRID (IF OPT(2)=-1).
C NOTE THAT IF THE OUTPUT GRID IS NOT FOUND IN A SPECIAL LIST,
C THEN THE TRANSFORM BACK TO GRID IS NOT VERY FAST.
C THIS SPECIAL LIST CONTAINS GLOBAL CYLINDRICAL GRIDS,
C POLAR STEREOGRAPHIC GRIDS CENTERED AT THE POLE
C AND MERCATOR GRIDS.
C ONLY HORIZONTAL INTERPOLATION IS PERFORMED.
C THE GRIDS ARE DEFINED BY THEIR GRID DESCRIPTION SECTIONS
C (PASSED IN INTEGER FORM AS DECODED BY SUBPROGRAM W3FI63).
C THE CURRENT CODE RECOGNIZES THE FOLLOWING PROJECTIONS:
C (KGDS(1)=000) EQUIDISTANT CYLINDRICAL
C (KGDS(1)=001) MERCATOR CYLINDRICAL
C (KGDS(1)=003) LAMBERT CONFORMAL CONICAL
C (KGDS(1)=004) GAUSSIAN CYLINDRICAL (SPECTRAL NATIVE)
C (KGDS(1)=005) POLAR STEREOGRAPHIC AZIMUTHAL
C (KGDS(1)=202) ROTATED EQUIDISTANT CYLINDRICAL (ETA NATIVE)
C WHERE KGDS COULD BE EITHER INPUT KGDSI OR OUTPUT KGDSO.
C AS AN ADDED BONUS THE NUMBER OF OUTPUT GRID POINTS
C AND THEIR LATITUDES AND LONGITUDES ARE ALSO RETURNED.
C ON THE OTHER HAND, THE OUTPUT CAN BE A SET OF STATION POINTS
C IF KGDSO(1)<0, IN WHICH CASE THE NUMBER OF POINTS
C AND THEIR LATITUDES AND LONGITUDES MUST BE INPUT.
C OUTPUT BITMAPS WILL NOT BE CREATED.
C
C PROGRAM HISTORY LOG:
C 96-04-10 IREDELL
C 2001-06-18 IREDELL IMPROVE DETECTION OF SPECIAL FAST TRANSFORM
C
C USAGE: CALL POLATEG4(IPOPT,KGDSI,KGDSO,MI,MO,KM,IBI,LI,GI,
C & NO,RLAT,RLON,CROT,SROT,IBO,LO,GO,IRET)
C
C INPUT ARGUMENT LIST:
C IPOPT - INTEGER (20) INTERPOLATION OPTIONS
C IPOPT(1)=0 FOR TRIANGULAR, IPOPT(1)=1 FOR RHOMBOIDAL;
C IPOPT(2) IS TRUNCATION NUMBER
C (DEFAULTS TO SENSIBLE IF IPOPT(2)=-1).
C KGDSI - INTEGER (200) INPUT GDS PARAMETERS AS DECODED BY W3FI63
C KGDSO - INTEGER (200) OUTPUT GDS PARAMETERS
C (KGDSO(1)<0 IMPLIES RANDOM STATION POINTS)
C MI - INTEGER SKIP NUMBER BETWEEN INPUT GRID FIELDS IF KM>1
C OR DIMENSION OF INPUT GRID FIELDS IF KM=1
C MO - INTEGER SKIP NUMBER BETWEEN OUTPUT GRID FIELDS IF KM>1
C OR DIMENSION OF OUTPUT GRID FIELDS IF KM=1
C KM - INTEGER NUMBER OF FIELDS TO INTERPOLATE
C IBI - INTEGER (KM) INPUT BITMAP FLAGS (MUST BE ALL 0)
C LI - LOGICAL*1 (MI,KM) INPUT BITMAPS (IF SOME IBI(K)=1)
C GI - REAL (MI,KM) INPUT FIELDS TO INTERPOLATE
C NO - INTEGER NUMBER OF OUTPUT POINTS (ONLY IF KGDSO(1)<0)
C RLAT - REAL (NO) OUTPUT LATITUDES IN DEGREES (IF KGDSO(1)<0)
C RLON - REAL (NO) OUTPUT LONGITUDES IN DEGREES (IF KGDSO(1)<0)
C CROT - REAL (NO) VECTOR ROTATION COSINES (IF KGDSO(1)<0)
C SROT - REAL (NO) VECTOR ROTATION SINES (IF KGDSO(1)<0)
C (UGRID=CROT*UEARTH-SROT*VEARTH;
C VGRID=SROT*UEARTH+CROT*VEARTH)
C
C OUTPUT ARGUMENT LIST:
C NO - INTEGER NUMBER OF OUTPUT POINTS (ONLY IF KGDSO(1)>=0)
C RLAT - REAL (MO) OUTPUT LATITUDES IN DEGREES (IF KGDSO(1)>=0)
C RLON - REAL (MO) OUTPUT LONGITUDES IN DEGREES (IF KGDSO(1)>=0)
C IBO - INTEGER (KM) OUTPUT BITMAP FLAGS
C LO - LOGICAL*1 (MO,KM) OUTPUT BITMAPS (ALWAYS OUTPUT)
C GO - REAL (MO,KM) OUTPUT FIELDS INTERPOLATED
C IRET - INTEGER RETURN CODE
C 0 SUCCESSFUL INTERPOLATION
C 2 UNRECOGNIZED INPUT GRID OR NO GRID OVERLAP
C 3 UNRECOGNIZED OUTPUT GRID
C 41 INVALID NONGLOBAL INPUT GRID
C 42 INVALID SPECTRAL METHOD PARAMETERS
C 43 UNIMPLEMENTED OUTPUT GRID
C
C SUBPROGRAMS CALLED:
C GDSWZD GRID DESCRIPTION SECTION WIZARD
C SPTRUN SPECTRALLY TRUNCATE GRIDDED SCALAR FIELDS
C SPTRUNS SPECTRALLY INTERPOLATE SCALARS TO POLAR STEREO.
C SPTRUNM SPECTRALLY INTERPOLATE SCALARS TO MERCATOR
C SPTRUNG SPECTRALLY INTERPOLATE SCALARS TO STATIONS
C
C ATTRIBUTES:
C LANGUAGE: FORTRAN 77
C
C$$$
INTEGER IPOPT(20)
INTEGER KGDSI(200),KGDSO(200)
INTEGER IBI(KM),IBO(KM)
LOGICAL*1 LI(MI,KM),LO(MO,KM)
REAL GI(MI,KM),XO(MO,KM),YO(MO,KM)
REAL RLAT(MO),RLON(MO)
REAL CROT(MO),SROT(MO)
REAL XPTS(MO),YPTS(MO)
REAL GO2(MO,KM)
PARAMETER(FILL=-9999.)
PARAMETER(RERTH=6.3712E6)
PARAMETER(PI=3.14159265358979,DPR=180./PI)
C - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
C COMPUTE NUMBER OF OUTPUT POINTS AND THEIR LATITUDES AND LONGITUDES.
IRET=0
IF(KGDSO(1).GE.0) THEN
CALL GDSWZD(KGDSO, 0,MO,FILL,XPTS,YPTS,RLON,RLAT,NO,1,CROT,SROT,
& 0,DUM,DUM,DUM,DUM)
IF(NO.EQ.0) IRET=3
ENDIF
C - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
C AFFIRM APPROPRIATE INPUT GRID
C LAT/LON OR GAUSSIAN
C NO BITMAPS
C FULL ZONAL COVERAGE
C FULL MERIDIONAL COVERAGE
IDRTI=KGDSI(1)
IM=KGDSI(2)
JM=KGDSI(3)
RLON1=KGDSI(5)*1.E-3
RLON2=KGDSI(8)*1.E-3
ISCAN=MOD(KGDSI(11)/128,2)
JSCAN=MOD(KGDSI(11)/64,2)
NSCAN=MOD(KGDSI(11)/32,2)
IF(IDRTI.NE.0.AND.IDRTI.NE.4) IRET=41
DO K=1,KM
IF(IBI(K).NE.0) IRET=41
ENDDO
IF(IRET.EQ.0) THEN
IF(ISCAN.EQ.0) THEN
DLON=(MOD(RLON2-RLON1-1+3600,360.)+1)/(IM-1)
ELSE
DLON=-(MOD(RLON1-RLON2-1+3600,360.)+1)/(IM-1)
ENDIF
IG=NINT(360/ABS(DLON))
IPRIME=1+MOD(-NINT(RLON1/DLON)+IG,IG)
IMAXI=IG
JMAXI=JM
IF(MOD(IG,2).NE.0.OR.IM.LT.IG) IRET=41
ENDIF
IF(IRET.EQ.0.AND.IDRTI.EQ.0) THEN
RLAT1=KGDSI(4)*1.E-3
RLAT2=KGDSI(7)*1.E-3
DLAT=(RLAT2-RLAT1)/(JM-1)
JG=NINT(180/ABS(DLAT))
IF(JM.EQ.JG) IDRTI=256
IF(JM.NE.JG.AND.JM.NE.JG+1) IRET=41
ELSEIF(IRET.EQ.0.AND.IDRTI.EQ.4) THEN
JG=KGDSI(10)*2
IF(JM.NE.JG) IRET=41
ENDIF
C - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
C SET PARAMETERS
IF(IRET.EQ.0) THEN
IROMB=IPOPT(1)
MAXWV=IPOPT(2)
IF(MAXWV.EQ.-1) THEN
IF(IROMB.EQ.0.AND.IDRTI.EQ.4) MAXWV=(JMAXI-1)
IF(IROMB.EQ.1.AND.IDRTI.EQ.4) MAXWV=(JMAXI-1)/2
IF(IROMB.EQ.0.AND.IDRTI.EQ.0) MAXWV=(JMAXI-3)/2
IF(IROMB.EQ.1.AND.IDRTI.EQ.0) MAXWV=(JMAXI-3)/4
IF(IROMB.EQ.0.AND.IDRTI.EQ.256) MAXWV=(JMAXI-1)/2
IF(IROMB.EQ.1.AND.IDRTI.EQ.256) MAXWV=(JMAXI-1)/4
ENDIF
IF((IROMB.NE.0.AND.IROMB.NE.1).OR.MAXWV.LT.0) IRET=42
ENDIF
C - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
C INTERPOLATE
IF(IRET.EQ.0) THEN
IF(NSCAN.EQ.0) THEN
ISKIPI=1
JSKIPI=IM
ELSE
ISKIPI=JM
JSKIPI=1
ENDIF
IF(ISCAN.EQ.1) ISKIPI=-ISKIPI
IF(JSCAN.EQ.0) JSKIPI=-JSKIPI
ISPEC=0
C SPECIAL CASE OF GLOBAL CYLINDRICAL GRID
IF((KGDSO(1).EQ.0.OR.KGDSO(1).EQ.4).AND.
& MOD(KGDSO(2),2).EQ.0.AND.KGDSO(5).EQ.0.AND.
& KGDSO(11).EQ.0) THEN
IDRTO=KGDSO(1)
IMO=KGDSO(2)
JMO=KGDSO(3)
RLON2=KGDSO(8)*1.E-3
DLONO=(MOD(RLON2-1+3600,360.)+1)/(IMO-1)
IGO=NINT(360/ABS(DLONO))
IF(IMO.EQ.IGO.AND.IDRTO.EQ.0) THEN
RLAT1=KGDSO(4)*1.E-3
RLAT2=KGDSO(7)*1.E-3
DLAT=(RLAT2-RLAT1)/(JMO-1)
JGO=NINT(180/ABS(DLAT))
IF(JMO.EQ.JGO) IDRTO=256
IF(JMO.EQ.JGO.OR.JMO.EQ.JGO+1) ISPEC=1
ELSEIF(IMO.EQ.IGO.AND.IDRTO.EQ.4) THEN
JGO=KGDSO(10)*2
IF(JMO.EQ.JGO) ISPEC=1
ENDIF
IF(ISPEC.EQ.1) THEN
CALL SPTRUND(IROMB,MAXWV,IDRTI,IMAXI,JMAXI,IDRTO,IMO,JMO,
& KM,IPRIME,ISKIPI,JSKIPI,MI,0,0,MO,0,GI,GM,
& XO,YO)
ELSE
IRET=43
ENDIF
ELSE
IRET=43
ENDIF
ENDIF
IF(IRET.EQ.0) THEN
DO K=1,KM
IBO(K)=0
DO N=1,NO
LO(N,K)=.TRUE.
ENDDO
ENDDO
ELSE
DO K=1,KM
IBO(K)=1
DO N=1,NO
LO(N,K)=.FALSE.
XO(N,K)=0.
YO(N,K)=0.
ENDDO
ENDDO
ENDIF
C - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
END