forked from madera/profanity3
-
Notifications
You must be signed in to change notification settings - Fork 3
/
profanity.cl
857 lines (712 loc) · 30.7 KB
/
profanity.cl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
/* profanity.cl
* ============
* Contains multi-precision arithmetic functions and iterative elliptical point
* addition which is the heart of profanity.
*
* Terminology
* ===========
*
*
* Cutting corners
* ===============
* In some instances this code will produce the incorrect results. The elliptical
* point addition does for example not properly handle the case of two points
* sharing the same X-coordinate. The reason the code doesn't handle it properly
* is because it is very unlikely to ever occur and the performance penalty for
* doing it right is too severe. In the future I'll introduce a periodic check
* after N amount of cycles that verifies the integrity of all the points to
* make sure that even very unlikely event are at some point rectified.
*
* Currently, if any of the points in the kernels experiences the unlikely event
* of an error then that point is forever garbage and your runtime-performance
* will in practice be (i*I-N) / (i*I). i and I here refers to the values given
* to the program via the -i and -I switches (default values of 255 and 16384
* respectively) and N is the number of errornous points.
*
* So if a single error occurs you'll lose 1/(i*I) of your performance. That's
* around 0.00002%. The program will still report the same hashrate of course,
* only that some of that work is entirely wasted on this errornous point.
*
* Initialization of main structure
* ================================
*
* Iteration
* =========
*
*
* TODO
* ====
* * Update comments to reflect new optimizations and structure
*
*/
/* ------------------------------------------------------------------------ */
/* Multiprecision functions */
/* ------------------------------------------------------------------------ */
#define MP_WORDS 8
#define MP_BITS 32
#define bswap32(n) (rotate(n & 0x00FF00FF, 24U)|(rotate(n, 8U) & 0x00FF00FF))
typedef uint mp_word;
typedef struct {
mp_word d[MP_WORDS];
} mp_number;
// mod = 0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2f
__constant const mp_number mod = { {0xfffffc2f, 0xfffffffe, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff} };
// tripleNegativeGx = 0x92c4cc831269ccfaff1ed83e946adeeaf82c096e76958573f2287becbb17b196
__constant const mp_number tripleNegativeGx = { {0xbb17b196, 0xf2287bec, 0x76958573, 0xf82c096e, 0x946adeea, 0xff1ed83e, 0x1269ccfa, 0x92c4cc83 } };
// doubleNegativeGy = 0x6f8a4b11b2b8773544b60807e3ddeeae05d0976eb2f557ccc7705edf09de52bf
__constant const mp_number doubleNegativeGy = { {0x09de52bf, 0xc7705edf, 0xb2f557cc, 0x05d0976e, 0xe3ddeeae, 0x44b60807, 0xb2b87735, 0x6f8a4b11} };
// negativeGy = 0xb7c52588d95c3b9aa25b0403f1eef75702e84bb7597aabe663b82f6f04ef2777
__constant const mp_number negativeGy = { {0x04ef2777, 0x63b82f6f, 0x597aabe6, 0x02e84bb7, 0xf1eef757, 0xa25b0403, 0xd95c3b9a, 0xb7c52588 } };
// Multiprecision subtraction. Underflow signalled via return value.
mp_word mp_sub(mp_number * const r, const mp_number * const a, const mp_number * const b) {
mp_word t, c = 0;
for (mp_word i = 0; i < MP_WORDS; ++i) {
t = a->d[i] - b->d[i] - c;
c = t > a->d[i] ? 1 : (t == a->d[i] ? c : 0);
r->d[i] = t;
}
return c;
}
// Multiprecision subtraction of the modulus saved in mod. Underflow signalled via return value.
mp_word mp_sub_mod(mp_number * const r) {
mp_number mod = { {0xfffffc2f, 0xfffffffe, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff} };
mp_word t, c = 0;
for (mp_word i = 0; i < MP_WORDS; ++i) {
t = r->d[i] - mod.d[i] - c;
c = t > r->d[i] ? 1 : (t == r->d[i] ? c : 0);
r->d[i] = t;
}
return c;
}
// Multiprecision subtraction modulo M, M = mod.
// This function is often also used for additions by subtracting a negative number. I've chosen
// to do this because:
// 1. It's easier to re-use an already existing function
// 2. A modular addition would have more overhead since it has to determine if the result of
// the addition (r) is in the gap M <= r < 2^256. This overhead doesn't exist in a
// subtraction. We immediately know at the end of a subtraction if we had underflow
// or not by inspecting the carry value. M refers to the modulus saved in variable mod.
void mp_mod_sub(mp_number * const r, const mp_number * const a, const mp_number * const b) {
mp_word i, t, c = 0;
for (i = 0; i < MP_WORDS; ++i) {
t = a->d[i] - b->d[i] - c;
c = t < a->d[i] ? 0 : (t == a->d[i] ? c : 1);
r->d[i] = t;
}
if (c) {
c = 0;
for (i = 0; i < MP_WORDS; ++i) {
r->d[i] += mod.d[i] + c;
c = r->d[i] < mod.d[i] ? 1 : (r->d[i] == mod.d[i] ? c : 0);
}
}
}
// Multiprecision subtraction modulo M from a constant number.
// I made this in the belief that using constant address space instead of private address space for any
// constant numbers would lead to increase in performance. Judges are still out on this one.
void mp_mod_sub_const(mp_number * const r, __constant const mp_number * const a, const mp_number * const b) {
mp_word i, t, c = 0;
for (i = 0; i < MP_WORDS; ++i) {
t = a->d[i] - b->d[i] - c;
c = t < a->d[i] ? 0 : (t == a->d[i] ? c : 1);
r->d[i] = t;
}
if (c) {
c = 0;
for (i = 0; i < MP_WORDS; ++i) {
r->d[i] += mod.d[i] + c;
c = r->d[i] < mod.d[i] ? 1 : (r->d[i] == mod.d[i] ? c : 0);
}
}
}
// Multiprecision subtraction modulo M of G_x from a number.
// Specialization of mp_mod_sub in hope of performance gain.
void mp_mod_sub_gx(mp_number * const r, const mp_number * const a) {
mp_word i, t, c = 0;
t = a->d[0] - 0x16f81798; c = t < a->d[0] ? 0 : (t == a->d[0] ? c : 1); r->d[0] = t;
t = a->d[1] - 0x59f2815b - c; c = t < a->d[1] ? 0 : (t == a->d[1] ? c : 1); r->d[1] = t;
t = a->d[2] - 0x2dce28d9 - c; c = t < a->d[2] ? 0 : (t == a->d[2] ? c : 1); r->d[2] = t;
t = a->d[3] - 0x029bfcdb - c; c = t < a->d[3] ? 0 : (t == a->d[3] ? c : 1); r->d[3] = t;
t = a->d[4] - 0xce870b07 - c; c = t < a->d[4] ? 0 : (t == a->d[4] ? c : 1); r->d[4] = t;
t = a->d[5] - 0x55a06295 - c; c = t < a->d[5] ? 0 : (t == a->d[5] ? c : 1); r->d[5] = t;
t = a->d[6] - 0xf9dcbbac - c; c = t < a->d[6] ? 0 : (t == a->d[6] ? c : 1); r->d[6] = t;
t = a->d[7] - 0x79be667e - c; c = t < a->d[7] ? 0 : (t == a->d[7] ? c : 1); r->d[7] = t;
if (c) {
c = 0;
for (i = 0; i < MP_WORDS; ++i) {
r->d[i] += mod.d[i] + c;
c = r->d[i] < mod.d[i] ? 1 : (r->d[i] == mod.d[i] ? c : 0);
}
}
}
// Multiprecision subtraction modulo M of G_y from a number.
// Specialization of mp_mod_sub in hope of performance gain.
void mp_mod_sub_gy(mp_number * const r, const mp_number * const a) {
mp_word i, t, c = 0;
t = a->d[0] - 0xfb10d4b8; c = t < a->d[0] ? 0 : (t == a->d[0] ? c : 1); r->d[0] = t;
t = a->d[1] - 0x9c47d08f - c; c = t < a->d[1] ? 0 : (t == a->d[1] ? c : 1); r->d[1] = t;
t = a->d[2] - 0xa6855419 - c; c = t < a->d[2] ? 0 : (t == a->d[2] ? c : 1); r->d[2] = t;
t = a->d[3] - 0xfd17b448 - c; c = t < a->d[3] ? 0 : (t == a->d[3] ? c : 1); r->d[3] = t;
t = a->d[4] - 0x0e1108a8 - c; c = t < a->d[4] ? 0 : (t == a->d[4] ? c : 1); r->d[4] = t;
t = a->d[5] - 0x5da4fbfc - c; c = t < a->d[5] ? 0 : (t == a->d[5] ? c : 1); r->d[5] = t;
t = a->d[6] - 0x26a3c465 - c; c = t < a->d[6] ? 0 : (t == a->d[6] ? c : 1); r->d[6] = t;
t = a->d[7] - 0x483ada77 - c; c = t < a->d[7] ? 0 : (t == a->d[7] ? c : 1); r->d[7] = t;
if (c) {
c = 0;
for (i = 0; i < MP_WORDS; ++i) {
r->d[i] += mod.d[i] + c;
c = r->d[i] < mod.d[i] ? 1 : (r->d[i] == mod.d[i] ? c : 0);
}
}
}
// Multiprecision addition. Overflow signalled via return value.
mp_word mp_add(mp_number * const r, const mp_number * const a) {
mp_word c = 0;
for (mp_word i = 0; i < MP_WORDS; ++i) {
r->d[i] += a->d[i] + c;
c = r->d[i] < a->d[i] ? 1 : (r->d[i] == a->d[i] ? c : 0);
}
return c;
}
// Multiprecision addition of the modulus saved in mod. Overflow signalled via return value.
mp_word mp_add_mod(mp_number * const r) {
mp_word c = 0;
for (mp_word i = 0; i < MP_WORDS; ++i) {
r->d[i] += mod.d[i] + c;
c = r->d[i] < mod.d[i] ? 1 : (r->d[i] == mod.d[i] ? c : 0);
}
return c;
}
// Multiprecision addition of two numbers with one extra word each. Overflow signalled via return value.
mp_word mp_add_more(mp_number * const r, mp_word * const extraR, const mp_number * const a, const mp_word * const extraA) {
const mp_word c = mp_add(r, a);
*extraR += *extraA + c;
return *extraR < *extraA ? 1 : (*extraR == *extraA ? c : 0);
}
// Multiprecision greater than or equal (>=) operator
mp_word mp_gte(const mp_number * const a, const mp_number * const b) {
mp_word l = 0, g = 0;
for (mp_word i = 0; i < MP_WORDS; ++i) {
if (a->d[i] < b->d[i]) l |= (1 << i);
if (a->d[i] > b->d[i]) g |= (1 << i);
}
return g >= l;
}
// Bit shifts a number with an extra word to the right one step
void mp_shr_extra(mp_number * const r, mp_word * const e) {
r->d[0] = (r->d[1] << 31) | (r->d[0] >> 1);
r->d[1] = (r->d[2] << 31) | (r->d[1] >> 1);
r->d[2] = (r->d[3] << 31) | (r->d[2] >> 1);
r->d[3] = (r->d[4] << 31) | (r->d[3] >> 1);
r->d[4] = (r->d[5] << 31) | (r->d[4] >> 1);
r->d[5] = (r->d[6] << 31) | (r->d[5] >> 1);
r->d[6] = (r->d[7] << 31) | (r->d[6] >> 1);
r->d[7] = (*e << 31) | (r->d[7] >> 1);
*e >>= 1;
}
// Bit shifts a number to the right one step
void mp_shr(mp_number * const r) {
r->d[0] = (r->d[1] << 31) | (r->d[0] >> 1);
r->d[1] = (r->d[2] << 31) | (r->d[1] >> 1);
r->d[2] = (r->d[3] << 31) | (r->d[2] >> 1);
r->d[3] = (r->d[4] << 31) | (r->d[3] >> 1);
r->d[4] = (r->d[5] << 31) | (r->d[4] >> 1);
r->d[5] = (r->d[6] << 31) | (r->d[5] >> 1);
r->d[6] = (r->d[7] << 31) | (r->d[6] >> 1);
r->d[7] >>= 1;
}
// Multiplies a number with a word and adds it to an existing number with an extra word, overflow of the extra word is signalled in return value
// This is a special function only used for modular multiplication
mp_word mp_mul_word_add_extra(mp_number * const r, const mp_number * const a, const mp_word w, mp_word * const extra) {
mp_word cM = 0; // Carry for multiplication
mp_word cA = 0; // Carry for addition
mp_word tM = 0; // Temporary storage for multiplication
for (mp_word i = 0; i < MP_WORDS; ++i) {
tM = (a->d[i] * w + cM);
cM = mul_hi(a->d[i], w) + (tM < cM);
r->d[i] += tM + cA;
cA = r->d[i] < tM ? 1 : (r->d[i] == tM ? cA : 0);
}
*extra += cM + cA;
return *extra < cM ? 1 : (*extra == cM ? cA : 0);
}
// Multiplies a number with a word, potentially adds modhigher to it, and then subtracts it from en existing number, no extra words, no overflow
// This is a special function only used for modular multiplication
void mp_mul_mod_word_sub(mp_number * const r, const mp_word w, const bool withModHigher) {
// Having these numbers declared here instead of using the global values in __constant address space seems to lead
// to better optimizations by the compiler on my GTX 1070.
mp_number mod = { { 0xfffffc2f, 0xfffffffe, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff} };
mp_number modhigher = { {0x00000000, 0xfffffc2f, 0xfffffffe, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff} };
mp_word cM = 0; // Carry for multiplication
mp_word cS = 0; // Carry for subtraction
mp_word tS = 0; // Temporary storage for subtraction
mp_word tM = 0; // Temporary storage for multiplication
mp_word cA = 0; // Carry for addition of modhigher
for (mp_word i = 0; i < MP_WORDS; ++i) {
tM = (mod.d[i] * w + cM);
cM = mul_hi(mod.d[i], w) + (tM < cM);
tM += (withModHigher ? modhigher.d[i] : 0) + cA;
cA = tM < (withModHigher ? modhigher.d[i] : 0) ? 1 : (tM == (withModHigher ? modhigher.d[i] : 0) ? cA : 0);
tS = r->d[i] - tM - cS;
cS = tS > r->d[i] ? 1 : (tS == r->d[i] ? cS : 0);
r->d[i] = tS;
}
}
// Modular multiplication. Based on Algorithm 3 (and a series of hunches) from this article:
// https://www.esat.kuleuven.be/cosic/publications/article-1191.pdf
// When I first implemented it I never encountered a situation where the additional end steps
// of adding or subtracting the modulo was necessary. Maybe it's not for the particular modulo
// used in secp256k1, maybe the overflow bit can be skipped in to avoid 8 subtractions and
// trade it for the final steps? Maybe the final steps are necessary but seldom needed?
// I have no idea, for the time being I'll leave it like this, also see the comments at the
// beginning of this document under the title "Cutting corners".
void mp_mod_mul(mp_number * const r, const mp_number * const X, const mp_number * const Y) {
mp_number Z = { {0} };
mp_word extraWord;
for (int i = MP_WORDS - 1; i >= 0; --i) {
// Z = Z * 2^32
extraWord = Z.d[7]; Z.d[7] = Z.d[6]; Z.d[6] = Z.d[5]; Z.d[5] = Z.d[4]; Z.d[4] = Z.d[3]; Z.d[3] = Z.d[2]; Z.d[2] = Z.d[1]; Z.d[1] = Z.d[0]; Z.d[0] = 0;
// Z = Z + X * Y_i
bool overflow = mp_mul_word_add_extra(&Z, X, Y->d[i], &extraWord);
// Z = Z - qM
mp_mul_mod_word_sub(&Z, extraWord, overflow);
}
*r = Z;
}
// Modular inversion of a number.
void mp_mod_inverse(mp_number * const r) {
mp_number A = { { 1 } };
mp_number C = { { 0 } };
mp_number v = mod;
mp_word extraA = 0;
mp_word extraC = 0;
while (r->d[0] || r->d[1] || r->d[2] || r->d[3] || r->d[4] || r->d[5] || r->d[6] || r->d[7]) {
while (!(r->d[0] & 1)) {
mp_shr(r);
if (A.d[0] & 1) {
extraA += mp_add_mod(&A);
}
mp_shr_extra(&A, &extraA);
}
while (!(v.d[0] & 1)) {
mp_shr(&v);
if (C.d[0] & 1) {
extraC += mp_add_mod(&C);
}
mp_shr_extra(&C, &extraC);
}
if (mp_gte(r, &v)) {
mp_sub(r, r, &v);
mp_add_more(&A, &extraA, &C, &extraC);
}
else {
mp_sub(&v, &v, r);
mp_add_more(&C, &extraC, &A, &extraA);
}
}
while (extraC) {
extraC -= mp_sub_mod(&C);
}
v = mod;
mp_sub(r, &v, &C);
}
/* ------------------------------------------------------------------------ */
/* Elliptic point and addition (with caveats). */
/* ------------------------------------------------------------------------ */
typedef struct {
mp_number x;
mp_number y;
} point;
// Elliptical point addition
// Does not handle points sharing X coordinate, this is a deliberate design choice.
// For more information on this choice see the beginning of this file.
void point_add(point * const r, point * const p, point * const o) {
mp_number tmp;
mp_number newX;
mp_number newY;
mp_mod_sub(&tmp, &o->x, &p->x);
mp_mod_inverse(&tmp);
mp_mod_sub(&newX, &o->y, &p->y);
mp_mod_mul(&tmp, &tmp, &newX);
mp_mod_mul(&newX, &tmp, &tmp);
mp_mod_sub(&newX, &newX, &p->x);
mp_mod_sub(&newX, &newX, &o->x);
mp_mod_sub(&newY, &p->x, &newX);
mp_mod_mul(&newY, &newY, &tmp);
mp_mod_sub(&newY, &newY, &p->y);
r->x = newX;
r->y = newY;
}
/* ------------------------------------------------------------------------ */
/* Profanity. */
/* ------------------------------------------------------------------------ */
typedef struct {
uint found;
uint foundId;
uchar foundHash[20];
} result;
void profanity_init_seed(__global const point * const precomp, point * const p, bool * const pIsFirst, const size_t precompOffset, const ulong seed) {
point o;
for (uchar i = 0; i < 8; ++i) {
const uchar shift = i * 8;
const uchar byte = (seed >> shift) & 0xFF;
if (byte) {
o = precomp[precompOffset + i * 255 + byte - 1];
if (*pIsFirst) {
*p = o;
*pIsFirst = false;
}
else {
point_add(p, p, &o);
}
}
}
}
__kernel void profanity_init(__global const point * const precomp, __global mp_number * const pDeltaX, __global mp_number * const pPrevLambda, __global result * const pResult, const ulong4 seed, const ulong4 seedX, const ulong4 seedY) {
const size_t id = get_global_id(0);
point p = {
.x = {.d = {
seedX.x & 0xFFFFFFFF, seedX.x >> 32,
seedX.y & 0xFFFFFFFF, seedX.y >> 32,
seedX.z & 0xFFFFFFFF, seedX.z >> 32,
seedX.w & 0xFFFFFFFF, seedX.w >> 32,
}},
.y = {.d = {
seedY.x & 0xFFFFFFFF, seedY.x >> 32,
seedY.y & 0xFFFFFFFF, seedY.y >> 32,
seedY.z & 0xFFFFFFFF, seedY.z >> 32,
seedY.w & 0xFFFFFFFF, seedY.w >> 32,
}},
};
point p_random;
bool bIsFirst = true;
mp_number tmp1, tmp2;
point tmp3;
// Calculate k*G where k = seed.wzyx (in other words, find the point indicated by the private key represented in seed)
profanity_init_seed(precomp, &p_random, &bIsFirst, 8 * 255 * 0, seed.x);
profanity_init_seed(precomp, &p_random, &bIsFirst, 8 * 255 * 1, seed.y);
profanity_init_seed(precomp, &p_random, &bIsFirst, 8 * 255 * 2, seed.z);
profanity_init_seed(precomp, &p_random, &bIsFirst, 8 * 255 * 3, seed.w + id);
point_add(&p, &p, &p_random);
// Calculate current lambda in this point
mp_mod_sub_gx(&tmp1, &p.x);
mp_mod_inverse(&tmp1);
mp_mod_sub_gy(&tmp2, &p.y);
mp_mod_mul(&tmp1, &tmp1, &tmp2);
// Jump to next point (precomp[0] is the generator point G)
tmp3 = precomp[0];
point_add(&p, &tmp3, &p);
// pDeltaX should contain the delta (x - G_x)
mp_mod_sub_gx(&p.x, &p.x);
pDeltaX[id] = p.x;
pPrevLambda[id] = tmp1;
for (uchar i = 0; i < PROFANITY_MAX_SCORE + 1; ++i) {
pResult[i].found = 0;
}
}
// This kernel calculates several modular inversions at once with just one inverse.
// It's an implementation of Algorithm 2.11 from Modern Computer Arithmetic:
// https://members.loria.fr/PZimmermann/mca/pub226.html
//
// My RX 480 is very sensitive to changes in the second loop and sometimes I have
// to make seemingly non-functional changes to the code to make the compiler
// generate the most optimized version.
__kernel void profanity_inverse(__global const mp_number * const pDeltaX, __global mp_number * const pInverse) {
const size_t id = get_global_id(0) * PROFANITY_INVERSE_SIZE;
// negativeDoubleGy = 0x6f8a4b11b2b8773544b60807e3ddeeae05d0976eb2f557ccc7705edf09de52bf
mp_number negativeDoubleGy = { {0x09de52bf, 0xc7705edf, 0xb2f557cc, 0x05d0976e, 0xe3ddeeae, 0x44b60807, 0xb2b87735, 0x6f8a4b11 } };
mp_number copy1, copy2;
mp_number buffer[PROFANITY_INVERSE_SIZE];
mp_number buffer2[PROFANITY_INVERSE_SIZE];
// We initialize buffer and buffer2 such that:
// buffer[i] = pDeltaX[id] * pDeltaX[id + 1] * pDeltaX[id + 2] * ... * pDeltaX[id + i]
// buffer2[i] = pDeltaX[id + i]
buffer[0] = pDeltaX[id];
for (uint i = 1; i < PROFANITY_INVERSE_SIZE; ++i) {
buffer2[i] = pDeltaX[id + i];
mp_mod_mul(&buffer[i], &buffer2[i], &buffer[i - 1]);
}
// Take the inverse of all x-values combined
copy1 = buffer[PROFANITY_INVERSE_SIZE - 1];
mp_mod_inverse(©1);
// We multiply in -2G_y together with the inverse so that we have:
// - 2 * G_y
// ----------------------------
// x_0 * x_1 * x_2 * x_3 * ...
mp_mod_mul(©1, ©1, &negativeDoubleGy);
// Multiply out each individual inverse using the buffers
for (uint i = PROFANITY_INVERSE_SIZE - 1; i > 0; --i) {
mp_mod_mul(©2, ©1, &buffer[i - 1]);
mp_mod_mul(©1, ©1, &buffer2[i]);
pInverse[id + i] = copy2;
}
pInverse[id] = copy1;
}
// This kernel performs en elliptical curve point addition. See:
// https://en.wikipedia.org/wiki/Elliptic_curve_point_multiplication#Point_addition
// I've made one mathematical optimization by never calculating x_r,
// instead I directly calculate the delta (x_q - x_p). It's for this
// delta we calculate the inverse and that's already been done at this
// point. By calculating and storing the next delta we don't have to
// calculate the delta in profanity_inverse_multiple which saves us
// one call to mp_mod_sub per point, but inversely we have to introduce
// an addition (or addition by subtracting a negative number) in
// profanity_end to retrieve the actual x-coordinate instead of the
// delta as that's what used for calculating the public hash.
//
// One optimization is when calculating the next y-coordinate. As
// given in the wiki the next y-coordinate is given by:
// y_r = λ²(x_p - x_r) - y_p
// In our case the other point P is the generator point so x_p = G_x,
// a constant value. x_r is the new point which we never calculate, we
// calculate the new delta (x_q - x_p) instead. Let's denote the delta
// with d and new delta as d' and remove notation for points P and Q and
// instead refeer to x_p as G_x, y_p as G_y and x_q as x, y_q as y.
// Furthermore let's denote new x by x' and new y with y'.
//
// Then we have:
// d = x - G_x <=> x = d + G_x
// x' = λ² - G_x - x <=> x_r = λ² - G_x - d - G_x = λ² - 2G_x - d
//
// d' = x' - G_x = λ² - 2G_x - d - G_x = λ² - 3G_x - d
//
// So we see that the new delta d' can be calculated with the same
// amount of steps as the new x'; 3G_x is still just a single constant.
//
// Now for the next y-coordinate in the new notation:
// y' = λ(G_x - x') - G_y
//
// If we expand the expression (G_x - x') we can see that this
// subtraction can be removed! Saving us one call to mp_mod_sub!
// G_x - x' = -(x' - G_x) = -d'
// It has the same value as the new delta but negated! We can avoid
// having to perform the negation by:
// y' = λ * -d' - G_y = -G_y - (λ * d')
//
// We can just precalculate the constant -G_y and we get rid of one
// subtraction. Woo!
//
// But we aren't done yet! Let's expand the expression for the next
// lambda, λ'. We have:
// λ' = (y' - G_y) / d'
// = (-λ * d' - G_y - G_y) / d'
// = (-λ * d' - 2*G_y) / d'
// = -λ - 2*G_y / d'
//
// So the next lambda value can be calculated from the old one. This in
// and of itself is not so interesting but the fact that the term -2 * G_y
// is a constant is! Since it's constant it'll be the same value no matter
// which point we're currently working with. This means that this factor
// can be multiplied in during the inversion, and just with one call per
// inversion instead of one call per point! This is small enough to be
// negligible and thus we've reduced our point addition from three
// multi-precision multiplications to just two! Wow. Just wow.
//
// There is additional overhead introduced by storing the previous lambda
// but it's still a net gain. To additionally decrease memory access
// overhead I never any longer store the Y coordinate. Instead I
// calculate it at the end directly from the lambda and deltaX.
//
// In addition to this some algebraic re-ordering has been done to move
// constants into the same argument to a new function mp_mod_sub_const
// in hopes that using constant storage instead of private storage
// will aid speeds.
//
// After the above point addition this kernel calculates the public address
// corresponding to the point and stores it in pInverse which is used only
// as interim storage as it won't otherwise be used again this cycle.
//
// One of the scoring kernels will run after this and fetch the address
// from pInverse.
__kernel void profanity_iterate(__global mp_number * const pDeltaX, __global mp_number * const pInverse, __global mp_number * const pPrevLambda) {
const size_t id = get_global_id(0);
// negativeGx = 0x8641998106234453aa5f9d6a3178f4f8fd640324d231d726a60d7ea3e907e497
mp_number negativeGx = { {0xe907e497, 0xa60d7ea3, 0xd231d726, 0xfd640324, 0x3178f4f8, 0xaa5f9d6a, 0x06234453, 0x86419981 } };
ethhash h = { { 0 } };
mp_number dX = pDeltaX[id];
mp_number tmp = pInverse[id];
mp_number lambda = pPrevLambda[id];
// λ' = - (2G_y) / d' - λ <=> lambda := pInversedNegativeDoubleGy[id] - pPrevLambda[id]
mp_mod_sub(&lambda, &tmp, &lambda);
// λ² = λ * λ <=> tmp := lambda * lambda = λ²
mp_mod_mul(&tmp, &lambda, &lambda);
// d' = λ² - d - 3g = (-3g) - (d - λ²) <=> x := tripleNegativeGx - (x - tmp)
mp_mod_sub(&dX, &dX, &tmp);
mp_mod_sub_const(&dX, &tripleNegativeGx, &dX);
pDeltaX[id] = dX;
pPrevLambda[id] = lambda;
// Calculate y from dX and lambda
// y' = (-G_Y) - λ * d' <=> p.y := negativeGy - (p.y * p.x)
mp_mod_mul(&tmp, &lambda, &dX);
mp_mod_sub_const(&tmp, &negativeGy, &tmp);
// Restore X coordinate from delta value
mp_mod_sub(&dX, &dX, &negativeGx);
// Initialize Keccak structure with point coordinates in big endian
h.d[0] = bswap32(dX.d[MP_WORDS - 1]);
h.d[1] = bswap32(dX.d[MP_WORDS - 2]);
h.d[2] = bswap32(dX.d[MP_WORDS - 3]);
h.d[3] = bswap32(dX.d[MP_WORDS - 4]);
h.d[4] = bswap32(dX.d[MP_WORDS - 5]);
h.d[5] = bswap32(dX.d[MP_WORDS - 6]);
h.d[6] = bswap32(dX.d[MP_WORDS - 7]);
h.d[7] = bswap32(dX.d[MP_WORDS - 8]);
h.d[8] = bswap32(tmp.d[MP_WORDS - 1]);
h.d[9] = bswap32(tmp.d[MP_WORDS - 2]);
h.d[10] = bswap32(tmp.d[MP_WORDS - 3]);
h.d[11] = bswap32(tmp.d[MP_WORDS - 4]);
h.d[12] = bswap32(tmp.d[MP_WORDS - 5]);
h.d[13] = bswap32(tmp.d[MP_WORDS - 6]);
h.d[14] = bswap32(tmp.d[MP_WORDS - 7]);
h.d[15] = bswap32(tmp.d[MP_WORDS - 8]);
h.d[16] ^= 0x01; // length 64
sha3_keccakf(&h);
// Save public address hash in pInverse, only used as interim storage until next cycle
pInverse[id].d[0] = h.d[3];
pInverse[id].d[1] = h.d[4];
pInverse[id].d[2] = h.d[5];
pInverse[id].d[3] = h.d[6];
pInverse[id].d[4] = h.d[7];
}
void profanity_result_update(const size_t id, __global const uchar * const hash, __global result * const pResult, const uchar score, const uchar scoreMax) {
if (score && score > scoreMax) {
uchar hasResult = atomic_inc(&pResult[score].found); // NOTE: If "too many" results are found it'll wrap around to 0 again and overwrite last result. Only relevant if global worksize exceeds MAX(uint).
// Save only one result for each score, the first.
if (hasResult == 0) {
pResult[score].foundId = id;
for (int i = 0; i < 20; ++i) {
pResult[score].foundHash[i] = hash[i];
}
}
}
}
__kernel void profanity_transform_contract(__global mp_number * const pInverse) {
const size_t id = get_global_id(0);
__global const uchar * const hash = pInverse[id].d;
ethhash h;
for (int i = 0; i < 50; ++i) {
h.d[i] = 0;
}
// set up keccak(0xd6, 0x94, address, 0x80)
h.b[0] = 214;
h.b[1] = 148;
for (int i = 0; i < 20; i++) {
h.b[i + 2] = hash[i];
}
h.b[22] = 128;
h.b[23] ^= 0x01; // length 23
sha3_keccakf(&h);
pInverse[id].d[0] = h.d[3];
pInverse[id].d[1] = h.d[4];
pInverse[id].d[2] = h.d[5];
pInverse[id].d[3] = h.d[6];
pInverse[id].d[4] = h.d[7];
}
__kernel void profanity_score_benchmark(__global mp_number * const pInverse, __global result * const pResult, __constant const uchar * const data1, __constant const uchar * const data2, const uchar scoreMax) {
const size_t id = get_global_id(0);
__global const uchar * const hash = pInverse[id].d;
int score = 0;
profanity_result_update(id, hash, pResult, score, scoreMax);
}
__kernel void profanity_score_matching(__global mp_number * const pInverse, __global result * const pResult, __constant const uchar * const data1, __constant const uchar * const data2, const uchar scoreMax) {
const size_t id = get_global_id(0);
__global const uchar * const hash = pInverse[id].d;
int score = 0;
for (int i = 0; i < 20; ++i) {
if (data1[i] > 0 && (hash[i] & data1[i]) == data2[i]) {
++score;
}
}
profanity_result_update(id, hash, pResult, score, scoreMax);
}
__kernel void profanity_score_leading(__global mp_number * const pInverse, __global result * const pResult, __constant const uchar * const data1, __constant const uchar * const data2, const uchar scoreMax) {
const size_t id = get_global_id(0);
__global const uchar * const hash = pInverse[id].d;
int score = 0;
for (int i = 0; i < 20; ++i) {
if ((hash[i] & 0xF0) >> 4 == data1[0]) {
++score;
}
else {
break;
}
if ((hash[i] & 0x0F) == data1[0]) {
++score;
}
else {
break;
}
}
profanity_result_update(id, hash, pResult, score, scoreMax);
}
__kernel void profanity_score_range(__global mp_number * const pInverse, __global result * const pResult, __constant const uchar * const data1, __constant const uchar * const data2, const uchar scoreMax) {
const size_t id = get_global_id(0);
__global const uchar * const hash = pInverse[id].d;
int score = 0;
for (int i = 0; i < 20; ++i) {
const uchar first = (hash[i] & 0xF0) >> 4;
const uchar second = (hash[i] & 0x0F);
if (first >= data1[0] && first <= data2[0]) {
++score;
}
if (second >= data1[0] && second <= data2[0]) {
++score;
}
}
profanity_result_update(id, hash, pResult, score, scoreMax);
}
__kernel void profanity_score_leadingrange(__global mp_number * const pInverse, __global result * const pResult, __constant const uchar * const data1, __constant const uchar * const data2, const uchar scoreMax) {
const size_t id = get_global_id(0);
__global const uchar * const hash = pInverse[id].d;
int score = 0;
for (int i = 0; i < 20; ++i) {
const uchar first = (hash[i] & 0xF0) >> 4;
const uchar second = (hash[i] & 0x0F);
if (first >= data1[0] && first <= data2[0]) {
++score;
}
else {
break;
}
if (second >= data1[0] && second <= data2[0]) {
++score;
}
else {
break;
}
}
profanity_result_update(id, hash, pResult, score, scoreMax);
}
__kernel void profanity_score_mirror(__global mp_number * const pInverse, __global result * const pResult, __constant const uchar * const data1, __constant const uchar * const data2, const uchar scoreMax) {
const size_t id = get_global_id(0);
__global const uchar * const hash = pInverse[id].d;
int score = 0;
for (int i = 0; i < 10; ++i) {
const uchar leftLeft = (hash[9 - i] & 0xF0) >> 4;
const uchar leftRight = (hash[9 - i] & 0x0F);
const uchar rightLeft = (hash[10 + i] & 0xF0) >> 4;
const uchar rightRight = (hash[10 + i] & 0x0F);
if (leftRight != rightLeft) {
break;
}
++score;
if (leftLeft != rightRight) {
break;
}
++score;
}
profanity_result_update(id, hash, pResult, score, scoreMax);
}
__kernel void profanity_score_doubles(__global mp_number * const pInverse, __global result * const pResult, __constant const uchar * const data1, __constant const uchar * const data2, const uchar scoreMax) {
const size_t id = get_global_id(0);
__global const uchar * const hash = pInverse[id].d;
int score = 0;
for (int i = 0; i < 20; ++i) {
if ((hash[i] == 0x00) || (hash[i] == 0x11) || (hash[i] == 0x22) || (hash[i] == 0x33) || (hash[i] == 0x44) || (hash[i] == 0x55) || (hash[i] == 0x66) || (hash[i] == 0x77) || (hash[i] == 0x88) || (hash[i] == 0x99) || (hash[i] == 0xAA) || (hash[i] == 0xBB) || (hash[i] == 0xCC) || (hash[i] == 0xDD) || (hash[i] == 0xEE) || (hash[i] == 0xFF)) {
++score;
}
else {
break;
}
}
profanity_result_update(id, hash, pResult, score, scoreMax);
}