Skip to content

Latest commit

 

History

History
61 lines (54 loc) · 2.8 KB

File metadata and controls

61 lines (54 loc) · 2.8 KB

A serverless dashboard to analyze and visualize Twitter data in real-time

Create Lambda functions

  1. Open AWS Console. Search and open AWS Lambda Service.
  2. Create the first Lambda function
    1. Name: collect_tweets
    2. Runtime: python 3.9
    3. Leave everything else as default, and create the function
    4. Upload the collect_tweets.zip
    5. In Configuration/General configuration:
      • Memory: 500 MB
      • Ephemeral storage: 1000 MB
      • Timeout: 1 min
    6. In Configuration/Environment variables, create the following variables and provide corresponding values:
      • api_key
      • api_secret
      • access_token
      • access_secret
      • mongodb_connect
      • database_name
      • geocode
      • q_parameter
    7. In Test, create a new event to test the function.
    8. If the test is successful, add a trigger:
      • Source: EventBridge
      • Create a new rule
      • Name: every5min
      • Schedule expression: rate(5 minutes)
  3. Create the second Lambda function
    1. Name: sentiment_tweets
    2. Runtime: python 3.9
    3. Leave everything else as default, and create the function
    4. Upload the sentiment_tweets.zip
    5. In Configuration/General configuration:
      • Memory: 500 MB
      • Ephemeral storage: 1000 MB
      • Timeout: 1 min
    6. In Configuration/Environment variables, create the following variables and provide corresponding values:
      • mongodb_connect
      • database_name
      • lang
    7. In Test, create a new event to test the function.
    8. If the test is successful, add a trigger:
      • Source: EventBridge
      • Use existing rule: every5min

Create a MongoDB Dashboard

  1. Log in to the MongoDB website and find the database that contains the collected tweets.
  2. Open MongoDB Chart and add a dashboard. Use the final project database as the data resource. Create the following charts and add filters to all charts to show the data from the last 60 mins.
    1. A number chart to show the total number of collected Tweets
    2. A line chart to show the number of Tweets in different sentiments over time. Use the local time zone.
    3. A word cloud to show the top 50 popular hashtags
    4. A bar chart to show the top 10 active Twitter users
    5. A table to show the Twitter texts, number of favorites, positive scores, and negative scores.

Video Tutorial

image