forked from foundation-model-stack/fms-hf-tuning
-
Notifications
You must be signed in to change notification settings - Fork 0
/
fused_ops_and_kernels.py
90 lines (67 loc) · 2.66 KB
/
fused_ops_and_kernels.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
# Copyright The FMS HF Tuning Authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Standard
from dataclasses import dataclass
from typing import List
# Local
from .utils import ensure_nested_dataclasses_initialized, parsable_dataclass
@parsable_dataclass
@dataclass
class FusedLoraConfig(List):
# load unsloth optimizations for these 4bit base layer weights.
# currently only support "auto_gptq" and "bitsandbytes"
base_layer: str = None
# fused kernels for lora linear layers
fused_lora: bool = False
def __post_init__(self):
if self.base_layer is not None and self.base_layer not in {
"auto_gptq",
"bitsandbytes",
}:
raise ValueError(f"base_layer set to invalid value '{self.base_layer}'")
if self.base_layer is not None and not self.fused_lora:
raise ValueError(
f"base_layer set to '{self.base_layer}' so fused_lora must be set to True"
)
@parsable_dataclass
@dataclass
class FastKernelsConfig(List):
# fast loss triton kernels
fast_loss: bool = False
# fast rms norm triton kernels
fast_rsm_layernorm: bool = False
# fast RoPE embedding triton kernels
fast_rope_embeddings: bool = False
def __post_init__(self):
if not self.fast_loss == self.fast_rsm_layernorm == self.fast_rope_embeddings:
raise ValueError(
"fast_loss, fast_rms_layernorm and fast_rope_embedding must be enabled "
"together. This restriction may be relaxed in the future."
)
@dataclass
class FusedOpsAndKernelsConfig:
# fused lora ops
fused_lora: FusedLoraConfig = None
# fast kernels
fast_kernels: FastKernelsConfig = None
def __post_init__(self):
if (self.fused_lora is not None and self.fast_kernels is None) or (
self.fused_lora is None and self.fast_kernels is not None
):
raise ValueError(
"fused lora and fast_kernels must be used together. "
"This restriction may be relaxed in the future."
)
# ensure nested dataclasses initialized
ensure_nested_dataclasses_initialized(self)