-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
100 lines (79 loc) · 2.98 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
import optMethods as opt
import drawFunc
import func
import numpy as np
import matplotlib.pyplot as plt
import pdb
def quadratic():
A = np.matrix([
[3., 2.],
[2., 6.]])
b = np.matrix([[1.], [-5.]])
obj = func.quadratic(A,b)
plt.figure()
drawFunc.draw(obj.f_x)
x = np.matrix([[0], [2]])
track = opt.newton(x, obj, 0, 1) # just one iteration
p1, = plt.plot(track[0,:].tolist()[0], track[1,:].tolist()[0])
track = opt.quasi_newton(x, obj, 100)
p2, = plt.plot(track[0,:].tolist()[0], track[1,:].tolist()[0],
'o-', linewidth=2.0)
plt.legend([p1, p2], ['Newton', 'Quasi_Newton_Rank_One'])
plt.show()
def rosen():
obj = func.rosenbrock()
plt.figure()
drawFunc.draw(obj.f_x)
start_point = np.matrix([[-1.5], [-4.0]])
plt.annotate('Start', xy=(-1.5, -4.0), xytext=(-1.8, -3.5),
arrowprops=dict(facecolor='black', shrink=0.02, frac=0.5))
plt.annotate('Optimal', xy=(1, 1), xytext=(1.1, 1.4),
arrowprops=dict(facecolor='black', shrink=0.02, frac=0.5))
#v = 0.0
#str1 = "Newton"
#track = opt.newton(start_point, obj, v)
#p1, = plt.plot(track[0,:].tolist()[0], track[1,:].tolist()[0],
# 'o-', linewidth=2.0)
v = 0.1
str2 = "Modified_Newton %.2f"%v
track = opt.newton(start_point, obj, v)
p2, = plt.plot(track[0,:].tolist()[0], track[1,:].tolist()[0],
'o-', linewidth=2.0)
v = 1.5
str3 = "Modified_Newton %.2f"%v
track = opt.newton(start_point, obj, v, 50)
p3, = plt.plot(track[0,:].tolist()[0], track[1,:].tolist()[0],
'o-', linewidth=2.0)
str4 = "Quasi_Newton_trivial"
track = opt.quasi_newton(start_point, obj, 150, 1)
p4, = plt.plot(track[0,:].tolist()[0], track[1,:].tolist()[0],
'o-', linewidth=2.0)
str5 = "Quasi_Newton_Armijo"
track = opt.quasi_newton(start_point, obj, 450, 0)
p5, = plt.plot(track[0,:].tolist()[0], track[1,:].tolist()[0],
'o-', linewidth=2.0)
str6 = "BFGS_trivial"
track = opt.BFGS(start_point, obj, 350, 1)
p6, = plt.plot(track[0,:].tolist()[0], track[1,:].tolist()[0],
'o-', linewidth=2.0)
str7 = "BFGS_Armijo"
track = opt.BFGS(start_point, obj, 350, 0)
p7, = plt.plot(track[0,:].tolist()[0], track[1,:].tolist()[0],
'o-', linewidth=2.0)
v = 0.001
str8 = "CG_FR_%.5f"%v
track = opt.fletcher_reeves(start_point, obj, iteration=30, alpha=v)
p8, = plt.plot(track[0,:].tolist()[0], track[1,:].tolist()[0],
'o-', linewidth=2.0)
v = 0.01
str9 = "CG_FR_%.5f"%v
track = opt.fletcher_reeves(start_point, obj, iteration=30, alpha=v)
p9, = plt.plot(track[0,:].tolist()[0], track[1,:].tolist()[0],
'o-', linewidth=2.0)
#plt.legend([p1, p2, p3, p4, p5, p6, p7],\
# [str1, str2, str3, str4, str5, str6, str7])
plt.legend([p2, p3, p4, p5, p6, p7, p8, p9],\
[str2, str3, str4, str5, str6, str7, str8, str9])
plt.show()
#quadratic()
rosen()