forked from facebook/rocksdb
-
Notifications
You must be signed in to change notification settings - Fork 0
/
dbformat.h
1100 lines (958 loc) · 40.7 KB
/
dbformat.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
// This source code is licensed under both the GPLv2 (found in the
// COPYING file in the root directory) and Apache 2.0 License
// (found in the LICENSE.Apache file in the root directory).
//
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file. See the AUTHORS file for names of contributors.
#pragma once
#include <stdio.h>
#include <memory>
#include <optional>
#include <string>
#include <utility>
#include "rocksdb/comparator.h"
#include "rocksdb/slice.h"
#include "rocksdb/slice_transform.h"
#include "rocksdb/types.h"
#include "util/coding.h"
#include "util/user_comparator_wrapper.h"
namespace ROCKSDB_NAMESPACE {
// The file declares data structures and functions that deal with internal
// keys.
// Each internal key contains a user key, a sequence number (SequenceNumber)
// and a type (ValueType), and they are usually encoded together.
// There are some related helper classes here.
class InternalKey;
// Value types encoded as the last component of internal keys.
// DO NOT CHANGE THESE ENUM VALUES: they are embedded in the on-disk
// data structures.
// The highest bit of the value type needs to be reserved to SST tables
// for them to do more flexible encoding.
enum ValueType : unsigned char {
kTypeDeletion = 0x0,
kTypeValue = 0x1,
kTypeMerge = 0x2,
kTypeLogData = 0x3, // WAL only.
kTypeColumnFamilyDeletion = 0x4, // WAL only.
kTypeColumnFamilyValue = 0x5, // WAL only.
kTypeColumnFamilyMerge = 0x6, // WAL only.
kTypeSingleDeletion = 0x7,
kTypeColumnFamilySingleDeletion = 0x8, // WAL only.
kTypeBeginPrepareXID = 0x9, // WAL only.
kTypeEndPrepareXID = 0xA, // WAL only.
kTypeCommitXID = 0xB, // WAL only.
kTypeRollbackXID = 0xC, // WAL only.
kTypeNoop = 0xD, // WAL only.
kTypeColumnFamilyRangeDeletion = 0xE, // WAL only.
kTypeRangeDeletion = 0xF, // meta block
kTypeColumnFamilyBlobIndex = 0x10, // Blob DB only
kTypeBlobIndex = 0x11, // Blob DB only
// When the prepared record is also persisted in db, we use a different
// record. This is to ensure that the WAL that is generated by a WritePolicy
// is not mistakenly read by another, which would result into data
// inconsistency.
kTypeBeginPersistedPrepareXID = 0x12, // WAL only.
// Similar to kTypeBeginPersistedPrepareXID, this is to ensure that WAL
// generated by WriteUnprepared write policy is not mistakenly read by
// another.
kTypeBeginUnprepareXID = 0x13, // WAL only.
kTypeDeletionWithTimestamp = 0x14,
kTypeCommitXIDAndTimestamp = 0x15, // WAL only
kTypeWideColumnEntity = 0x16,
kTypeColumnFamilyWideColumnEntity = 0x17, // WAL only
kTypeValuePreferredSeqno = 0x18, // Value with a unix write time
kTypeColumnFamilyValuePreferredSeqno = 0x19, // WAL only
kTypeMaxValid, // Should be after the last valid type, only used for
// validation
kMaxValue = 0x7F // Not used for storing records.
};
// Defined in dbformat.cc
extern const ValueType kValueTypeForSeek;
extern const ValueType kValueTypeForSeekForPrev;
// A range of user keys used internally by RocksDB. Also see `Range` used by
// public APIs.
struct UserKeyRange {
// In case of user_defined timestamp, if enabled, `start` and `limit` should
// include user_defined timestamps.
Slice start;
Slice limit;
UserKeyRange() = default;
UserKeyRange(const Slice& s, const Slice& l) : start(s), limit(l) {}
};
// A range of user keys used internally by RocksDB. Also see `RangePtr` used by
// public APIs.
struct UserKeyRangePtr {
// In case of user_defined timestamp, if enabled, `start` and `limit` should
// point to key with timestamp part.
// An optional range start, if missing, indicating a start before all keys.
std::optional<Slice> start;
// An optional range end, if missing, indicating an end after all keys.
std::optional<Slice> limit;
UserKeyRangePtr(const std::optional<Slice>& s, const std::optional<Slice>& l)
: start(s), limit(l) {}
};
// Checks whether a type is an inline value type
// (i.e. a type used in memtable skiplist and sst file datablock).
inline bool IsValueType(ValueType t) {
return t <= kTypeMerge || kTypeSingleDeletion == t || kTypeBlobIndex == t ||
kTypeDeletionWithTimestamp == t || kTypeWideColumnEntity == t ||
kTypeValuePreferredSeqno == t;
}
// Checks whether a type is from user operation
// kTypeRangeDeletion is in meta block so this API is separated from above
// kTypeMaxValid can be from keys generated by
// TruncatedRangeDelIterator::start_key()
inline bool IsExtendedValueType(ValueType t) {
return IsValueType(t) || t == kTypeRangeDeletion || t == kTypeMaxValid;
}
// We leave eight bits empty at the bottom so a type and sequence#
// can be packed together into 64-bits.
static const SequenceNumber kMaxSequenceNumber = ((0x1ull << 56) - 1);
static const SequenceNumber kDisableGlobalSequenceNumber =
std::numeric_limits<uint64_t>::max();
constexpr uint64_t kNumInternalBytes = 8;
// Defined in dbformat.cc
extern const std::string kDisableUserTimestamp;
// The data structure that represents an internal key in the way that user_key,
// sequence number and type are stored in separated forms.
struct ParsedInternalKey {
Slice user_key;
SequenceNumber sequence;
ValueType type;
ParsedInternalKey()
: sequence(kMaxSequenceNumber),
type(kTypeDeletion) // Make code analyzer happy
{} // Intentionally left uninitialized (for speed)
// u contains timestamp if user timestamp feature is enabled.
ParsedInternalKey(const Slice& u, const SequenceNumber& seq, ValueType t)
: user_key(u), sequence(seq), type(t) {}
std::string DebugString(bool log_err_key, bool hex) const;
void clear() {
user_key.clear();
sequence = 0;
type = kTypeDeletion;
}
void SetTimestamp(const Slice& ts) {
assert(ts.size() <= user_key.size());
const char* addr = user_key.data() + user_key.size() - ts.size();
memcpy(const_cast<char*>(addr), ts.data(), ts.size());
}
Slice GetTimestamp(size_t ts_sz) {
assert(ts_sz <= user_key.size());
const char* addr = user_key.data() + user_key.size() - ts_sz;
return Slice(const_cast<char*>(addr), ts_sz);
}
};
// Return the length of the encoding of "key".
inline size_t InternalKeyEncodingLength(const ParsedInternalKey& key) {
return key.user_key.size() + kNumInternalBytes;
}
// Pack a sequence number and a ValueType into a uint64_t
inline uint64_t PackSequenceAndType(uint64_t seq, ValueType t) {
assert(seq <= kMaxSequenceNumber);
// kTypeMaxValid is used in TruncatedRangeDelIterator, see its constructor.
assert(IsExtendedValueType(t) || t == kTypeMaxValid);
return (seq << 8) | t;
}
// Given the result of PackSequenceAndType, store the sequence number in *seq
// and the ValueType in *t.
inline void UnPackSequenceAndType(uint64_t packed, uint64_t* seq,
ValueType* t) {
*seq = packed >> 8;
*t = static_cast<ValueType>(packed & 0xff);
// Commented the following two assertions in order to test key-value checksum
// on corrupted keys without crashing ("DbKvChecksumTest").
// assert(*seq <= kMaxSequenceNumber);
// assert(IsExtendedValueType(*t));
}
const uint64_t kRangeTombstoneSentinel =
PackSequenceAndType(kMaxSequenceNumber, kTypeRangeDeletion);
EntryType GetEntryType(ValueType value_type);
// Append the serialization of "key" to *result.
//
// input [internal key]: <user_key | seqno + type>
// output before: empty
// output: <user_key | seqno + type>
void AppendInternalKey(std::string* result, const ParsedInternalKey& key);
// Append the serialization of "key" to *result, replacing the original
// timestamp with argument ts.
//
// input [internal key]: <user_provided_key | original_ts | seqno + type>
// output before: empty
// output after: <user_provided_key | ts | seqno + type>
void AppendInternalKeyWithDifferentTimestamp(std::string* result,
const ParsedInternalKey& key,
const Slice& ts);
// Append the user key to *result, replacing the original timestamp with
// argument ts.
//
// input [user key]: <user_provided_key | original_ts>
// output before: empty
// output after: <user_provided_key | ts>
void AppendUserKeyWithDifferentTimestamp(std::string* result, const Slice& key,
const Slice& ts);
// Serialized internal key consists of user key followed by footer.
// This function appends the footer to *result, assuming that *result already
// contains the user key at the end.
//
// output before: <user_key>
// output after: <user_key | seqno + type>
void AppendInternalKeyFooter(std::string* result, SequenceNumber s,
ValueType t);
// Append the key and a minimal timestamp to *result
//
// input [user key without ts]: <user_provided_key>
// output before: empty
// output after: <user_provided_key | min_ts>
void AppendKeyWithMinTimestamp(std::string* result, const Slice& key,
size_t ts_sz);
// Append the key and a maximal timestamp to *result
//
// input [user key without ts]: <user_provided_key>
// output before: empty
// output after: <user_provided_key | max_ts>
void AppendKeyWithMaxTimestamp(std::string* result, const Slice& key,
size_t ts_sz);
// `key` is a user key with timestamp. Append the user key without timestamp
// and the minimum timestamp to *result.
//
// input [user key]: <user_provided_key | original_ts>
// output before: empty
// output after: <user_provided_key | min_ts>
void AppendUserKeyWithMinTimestamp(std::string* result, const Slice& key,
size_t ts_sz);
// `key` is a user key with timestamp. Append the user key without timestamp
// and the maximal timestamp to *result.
//
// input [user key]: <user_provided_key | original_ts>
// output before: empty
// output after: <user_provided_key | max_ts>
void AppendUserKeyWithMaxTimestamp(std::string* result, const Slice& key,
size_t ts_sz);
// `key` is an internal key containing a user key without timestamp. Create a
// new key in *result by padding a min timestamp of size `ts_sz` to the user key
// and copying the remaining internal key bytes.
//
// input [internal key]: <user_provided_key | seqno + type>
// output before: empty
// output after: <user_provided_key | min_ts | seqno + type>
void PadInternalKeyWithMinTimestamp(std::string* result, const Slice& key,
size_t ts_sz);
// `key` is an internal key containing a user key without timestamp. Create a
// new key in *result by padding a max timestamp of size `ts_sz` to the user key
// and copying the remaining internal key bytes.
//
// input [internal key]: <user_provided_key | seqno + type>
// output before: empty
// output after: <user_provided_key | max_ts | seqno + type>
void PadInternalKeyWithMaxTimestamp(std::string* result, const Slice& key,
size_t ts_sz);
// `key` is an internal key containing a user key with timestamp of size
// `ts_sz`. Create a new internal key in *result by stripping the timestamp from
// the user key and copying the remaining internal key bytes.
//
// input [internal key]: <user_provided_key | original_ts | seqno + type>
// output before: empty
// output after: <user_provided_key | seqno + type>
void StripTimestampFromInternalKey(std::string* result, const Slice& key,
size_t ts_sz);
// `key` is an internal key containing a user key with timestamp of size
// `ts_sz`. Create a new internal key in *result while replace the original
// timestamp with min timestamp.
//
// input [internal key]: <user_provided_key | original_ts | seqno + type>
// output before: empty
// output after: <user_provided_key | min_ts | seqno + type>
void ReplaceInternalKeyWithMinTimestamp(std::string* result, const Slice& key,
size_t ts_sz);
// Attempt to parse an internal key from "internal_key". On success,
// stores the parsed data in "*result", and returns true.
//
// On error, returns false, leaves "*result" in an undefined state.
Status ParseInternalKey(const Slice& internal_key, ParsedInternalKey* result,
bool log_err_key);
// Returns the user key portion of an internal key.
//
// input [internal key]: <user_key | seqno + type>
// output: <user_key>
inline Slice ExtractUserKey(const Slice& internal_key) {
assert(internal_key.size() >= kNumInternalBytes);
return Slice(internal_key.data(), internal_key.size() - kNumInternalBytes);
}
// input [internal key]: <user_provided_key | ts | seqno + type>
// output : <user_provided_key>
inline Slice ExtractUserKeyAndStripTimestamp(const Slice& internal_key,
size_t ts_sz) {
Slice ret = internal_key;
ret.remove_suffix(kNumInternalBytes + ts_sz);
return ret;
}
// input [user key]: <user_provided_key | ts>
// output: <user_provided_key>
inline Slice StripTimestampFromUserKey(const Slice& user_key, size_t ts_sz) {
Slice ret = user_key;
ret.remove_suffix(ts_sz);
return ret;
}
// input [user key]: <user_provided_key | ts>
// output: <ts>
inline Slice ExtractTimestampFromUserKey(const Slice& user_key, size_t ts_sz) {
assert(user_key.size() >= ts_sz);
return Slice(user_key.data() + user_key.size() - ts_sz, ts_sz);
}
// input [internal key]: <user_provided_key | ts | seqno + type>
// output: <ts>
inline Slice ExtractTimestampFromKey(const Slice& internal_key, size_t ts_sz) {
const size_t key_size = internal_key.size();
assert(key_size >= kNumInternalBytes + ts_sz);
return Slice(internal_key.data() + key_size - ts_sz - kNumInternalBytes,
ts_sz);
}
// input [internal key]: <user_provided_key | ts | seqno + type>
// output: <seqno + type>
inline uint64_t ExtractInternalKeyFooter(const Slice& internal_key) {
assert(internal_key.size() >= kNumInternalBytes);
const size_t n = internal_key.size();
return DecodeFixed64(internal_key.data() + n - kNumInternalBytes);
}
// input [internal key]: <user_provided_key | ts | seqno + type>
// output: <type>
inline ValueType ExtractValueType(const Slice& internal_key) {
uint64_t num = ExtractInternalKeyFooter(internal_key);
unsigned char c = num & 0xff;
return static_cast<ValueType>(c);
}
// A comparator for internal keys that uses a specified comparator for
// the user key portion and breaks ties by decreasing sequence number.
class InternalKeyComparator
#ifdef NDEBUG
final
#endif
: public CompareInterface {
private:
UserComparatorWrapper user_comparator_;
public:
// `InternalKeyComparator`s constructed with the default constructor are not
// usable and will segfault on any attempt to use them for comparisons.
InternalKeyComparator() = default;
// @param named If true, assign a name to this comparator based on the
// underlying comparator's name. This involves an allocation and copy in
// this constructor to precompute the result of `Name()`. To avoid this
// overhead, set `named` to false. In that case, `Name()` will return a
// generic name that is non-specific to the underlying comparator.
explicit InternalKeyComparator(const Comparator* c) : user_comparator_(c) {}
virtual ~InternalKeyComparator() {}
int Compare(const Slice& a, const Slice& b) const override;
bool Equal(const Slice& a, const Slice& b) const {
// TODO Use user_comparator_.Equal(). Perhaps compare seqno before
// comparing the user key too.
return Compare(a, b) == 0;
}
// Same as Compare except that it excludes the value type from comparison
int CompareKeySeq(const Slice& a, const Slice& b) const;
int CompareKeySeq(const ParsedInternalKey& a, const Slice& b) const;
const Comparator* user_comparator() const {
return user_comparator_.user_comparator();
}
int Compare(const InternalKey& a, const InternalKey& b) const;
int Compare(const ParsedInternalKey& a, const ParsedInternalKey& b) const;
int Compare(const Slice& a, const ParsedInternalKey& b) const;
int Compare(const ParsedInternalKey& a, const Slice& b) const;
// In this `Compare()` overload, the sequence numbers provided in
// `a_global_seqno` and `b_global_seqno` override the sequence numbers in `a`
// and `b`, respectively. To disable sequence number override(s), provide the
// value `kDisableGlobalSequenceNumber`.
int Compare(const Slice& a, SequenceNumber a_global_seqno, const Slice& b,
SequenceNumber b_global_seqno) const;
};
// The class represent the internal key in encoded form.
class InternalKey {
private:
std::string rep_;
public:
InternalKey() {} // Leave rep_ as empty to indicate it is invalid
InternalKey(const Slice& _user_key, SequenceNumber s, ValueType t) {
AppendInternalKey(&rep_, ParsedInternalKey(_user_key, s, t));
}
InternalKey(const Slice& _user_key, SequenceNumber s, ValueType t, Slice ts) {
AppendInternalKeyWithDifferentTimestamp(
&rep_, ParsedInternalKey(_user_key, s, t), ts);
}
// sets the internal key to be bigger or equal to all internal keys with this
// user key
void SetMaxPossibleForUserKey(const Slice& _user_key) {
AppendInternalKey(
&rep_, ParsedInternalKey(_user_key, 0, static_cast<ValueType>(0)));
}
// sets the internal key to be smaller or equal to all internal keys with this
// user key
void SetMinPossibleForUserKey(const Slice& _user_key) {
AppendInternalKey(&rep_, ParsedInternalKey(_user_key, kMaxSequenceNumber,
kValueTypeForSeek));
}
bool Valid() const {
ParsedInternalKey parsed;
return (ParseInternalKey(Slice(rep_), &parsed, false /* log_err_key */)
.ok()); // TODO
}
void DecodeFrom(const Slice& s) { rep_.assign(s.data(), s.size()); }
Slice Encode() const {
assert(!rep_.empty());
return rep_;
}
Slice user_key() const { return ExtractUserKey(rep_); }
size_t size() const { return rep_.size(); }
void Set(const Slice& _user_key, SequenceNumber s, ValueType t) {
SetFrom(ParsedInternalKey(_user_key, s, t));
}
void Set(const Slice& _user_key_with_ts, SequenceNumber s, ValueType t,
const Slice& ts) {
ParsedInternalKey pik(_user_key_with_ts, s, t);
// Should not call pik.SetTimestamp() directly as it overwrites the buffer
// containing _user_key.
SetFrom(pik, ts);
}
void SetFrom(const ParsedInternalKey& p) {
rep_.clear();
AppendInternalKey(&rep_, p);
}
void SetFrom(const ParsedInternalKey& p, const Slice& ts) {
rep_.clear();
AppendInternalKeyWithDifferentTimestamp(&rep_, p, ts);
}
void Clear() { rep_.clear(); }
// The underlying representation.
// Intended only to be used together with ConvertFromUserKey().
std::string* rep() { return &rep_; }
// Assuming that *rep() contains a user key, this method makes internal key
// out of it in-place. This saves a memcpy compared to Set()/SetFrom().
void ConvertFromUserKey(SequenceNumber s, ValueType t) {
AppendInternalKeyFooter(&rep_, s, t);
}
std::string DebugString(bool hex) const;
};
inline int InternalKeyComparator::Compare(const InternalKey& a,
const InternalKey& b) const {
return Compare(a.Encode(), b.Encode());
}
inline Status ParseInternalKey(const Slice& internal_key,
ParsedInternalKey* result, bool log_err_key) {
const size_t n = internal_key.size();
if (n < kNumInternalBytes) {
return Status::Corruption("Corrupted Key: Internal Key too small. Size=" +
std::to_string(n) + ". ");
}
uint64_t num = DecodeFixed64(internal_key.data() + n - kNumInternalBytes);
unsigned char c = num & 0xff;
result->sequence = num >> 8;
result->type = static_cast<ValueType>(c);
assert(result->type <= ValueType::kMaxValue);
result->user_key = Slice(internal_key.data(), n - kNumInternalBytes);
if (IsExtendedValueType(result->type)) {
return Status::OK();
} else {
return Status::Corruption("Corrupted Key",
result->DebugString(log_err_key, true));
}
}
// Update the sequence number in the internal key.
// Guarantees not to invalidate ikey.data().
inline void UpdateInternalKey(std::string* ikey, uint64_t seq, ValueType t) {
size_t ikey_sz = ikey->size();
assert(ikey_sz >= kNumInternalBytes);
uint64_t newval = (seq << 8) | t;
// Note: Since C++11, strings are guaranteed to be stored contiguously and
// string::operator[]() is guaranteed not to change ikey.data().
EncodeFixed64(&(*ikey)[ikey_sz - kNumInternalBytes], newval);
}
// Get the sequence number from the internal key
inline uint64_t GetInternalKeySeqno(const Slice& internal_key) {
const size_t n = internal_key.size();
assert(n >= kNumInternalBytes);
uint64_t num = DecodeFixed64(internal_key.data() + n - kNumInternalBytes);
return num >> 8;
}
// The class to store keys in an efficient way. It allows:
// 1. Users can either copy the key into it, or have it point to an unowned
// address.
// 2. For copied key, a short inline buffer is kept to reduce memory
// allocation for smaller keys.
// 3. It tracks user key or internal key, and allow conversion between them.
class IterKey {
public:
IterKey()
: buf_(space_),
key_(buf_),
key_size_(0),
buf_size_(sizeof(space_)),
is_user_key_(true) {}
// No copying allowed
IterKey(const IterKey&) = delete;
void operator=(const IterKey&) = delete;
~IterKey() { ResetBuffer(); }
// The bool will be picked up by the next calls to SetKey
void SetIsUserKey(bool is_user_key) { is_user_key_ = is_user_key; }
// Returns the key in whichever format that was provided to KeyIter
// If user-defined timestamp is enabled, then timestamp is included in the
// return result.
Slice GetKey() const { return Slice(key_, key_size_); }
Slice GetInternalKey() const {
assert(!IsUserKey());
return Slice(key_, key_size_);
}
// If user-defined timestamp is enabled, then timestamp is included in the
// return result of GetUserKey();
Slice GetUserKey() const {
if (IsUserKey()) {
return Slice(key_, key_size_);
} else {
assert(key_size_ >= kNumInternalBytes);
return Slice(key_, key_size_ - kNumInternalBytes);
}
}
size_t Size() const { return key_size_; }
void Clear() { key_size_ = 0; }
// Append "non_shared_data" to its back, from "shared_len"
// This function is used in Block::Iter::ParseNextKey
// shared_len: bytes in [0, shard_len-1] would be remained
// non_shared_data: data to be append, its length must be >= non_shared_len
void TrimAppend(const size_t shared_len, const char* non_shared_data,
const size_t non_shared_len) {
assert(shared_len <= key_size_);
size_t total_size = shared_len + non_shared_len;
if (IsKeyPinned() /* key is not in buf_ */) {
// Copy the key from external memory to buf_ (copy shared_len bytes)
EnlargeBufferIfNeeded(total_size);
memcpy(buf_, key_, shared_len);
} else if (total_size > buf_size_) {
// Need to allocate space, delete previous space
char* p = new char[total_size];
memcpy(p, key_, shared_len);
if (buf_ != space_) {
delete[] buf_;
}
buf_ = p;
buf_size_ = total_size;
}
memcpy(buf_ + shared_len, non_shared_data, non_shared_len);
key_ = buf_;
key_size_ = total_size;
}
// A version of `TrimAppend` assuming the last bytes of length `ts_sz` in the
// user key part of `key_` is not counted towards shared bytes. And the
// decoded key needed a min timestamp of length `ts_sz` pad to the user key.
void TrimAppendWithTimestamp(const size_t shared_len,
const char* non_shared_data,
const size_t non_shared_len,
const size_t ts_sz) {
std::string kTsMin(ts_sz, static_cast<unsigned char>(0));
std::string key_with_ts;
std::vector<Slice> key_parts_with_ts;
if (IsUserKey()) {
key_parts_with_ts = {Slice(key_, shared_len),
Slice(non_shared_data, non_shared_len),
Slice(kTsMin)};
} else {
assert(shared_len + non_shared_len >= kNumInternalBytes);
// Invaraint: shared_user_key_len + shared_internal_bytes_len = shared_len
// In naming below `*_len` variables, keyword `user_key` refers to the
// user key part of the existing key in `key_` as apposed to the new key.
// Similary, `internal_bytes` refers to the footer part of the existing
// key. These bytes potentially will move between user key part and the
// footer part in the new key.
const size_t user_key_len = key_size_ - kNumInternalBytes;
const size_t sharable_user_key_len = user_key_len - ts_sz;
const size_t shared_user_key_len =
std::min(shared_len, sharable_user_key_len);
const size_t shared_internal_bytes_len = shared_len - shared_user_key_len;
// One Slice among the three Slices will get split into two Slices, plus
// a timestamp slice.
key_parts_with_ts.reserve(5);
bool ts_added = false;
// Add slice parts and find the right location to add the min timestamp.
MaybeAddKeyPartsWithTimestamp(
key_, shared_user_key_len,
shared_internal_bytes_len + non_shared_len < kNumInternalBytes,
shared_len + non_shared_len - kNumInternalBytes, kTsMin,
key_parts_with_ts, &ts_added);
MaybeAddKeyPartsWithTimestamp(
key_ + user_key_len, shared_internal_bytes_len,
non_shared_len < kNumInternalBytes,
shared_internal_bytes_len + non_shared_len - kNumInternalBytes,
kTsMin, key_parts_with_ts, &ts_added);
MaybeAddKeyPartsWithTimestamp(non_shared_data, non_shared_len,
non_shared_len >= kNumInternalBytes,
non_shared_len - kNumInternalBytes, kTsMin,
key_parts_with_ts, &ts_added);
assert(ts_added);
}
Slice new_key(SliceParts(&key_parts_with_ts.front(),
static_cast<int>(key_parts_with_ts.size())),
&key_with_ts);
SetKey(new_key);
}
Slice SetKey(const Slice& key, bool copy = true) {
// is_user_key_ expected to be set already via SetIsUserKey
return SetKeyImpl(key, copy);
}
// If user-defined timestamp is enabled, then `key` includes timestamp.
// TODO(yanqin) this is also used to set prefix, which do not include
// timestamp. Should be handled.
Slice SetUserKey(const Slice& key, bool copy = true) {
is_user_key_ = true;
return SetKeyImpl(key, copy);
}
Slice SetInternalKey(const Slice& key, bool copy = true) {
is_user_key_ = false;
return SetKeyImpl(key, copy);
}
// Copies the content of key, updates the reference to the user key in ikey
// and returns a Slice referencing the new copy.
Slice SetInternalKey(const Slice& key, ParsedInternalKey* ikey) {
size_t key_n = key.size();
assert(key_n >= kNumInternalBytes);
SetInternalKey(key);
ikey->user_key = Slice(key_, key_n - kNumInternalBytes);
return Slice(key_, key_n);
}
// Copy the key into IterKey own buf_
void OwnKey() {
assert(IsKeyPinned() == true);
Reserve(key_size_);
memcpy(buf_, key_, key_size_);
key_ = buf_;
}
// Update the sequence number in the internal key. Guarantees not to
// invalidate slices to the key (and the user key).
void UpdateInternalKey(uint64_t seq, ValueType t, const Slice* ts = nullptr) {
assert(!IsKeyPinned());
assert(key_size_ >= kNumInternalBytes);
if (ts) {
assert(key_size_ >= kNumInternalBytes + ts->size());
memcpy(&buf_[key_size_ - kNumInternalBytes - ts->size()], ts->data(),
ts->size());
}
uint64_t newval = (seq << 8) | t;
EncodeFixed64(&buf_[key_size_ - kNumInternalBytes], newval);
}
bool IsKeyPinned() const { return (key_ != buf_); }
// If `ts` is provided, user_key should not contain timestamp,
// and `ts` is appended after user_key.
// TODO: more efficient storage for timestamp.
void SetInternalKey(const Slice& key_prefix, const Slice& user_key,
SequenceNumber s,
ValueType value_type = kValueTypeForSeek,
const Slice* ts = nullptr) {
size_t psize = key_prefix.size();
size_t usize = user_key.size();
size_t ts_sz = (ts != nullptr ? ts->size() : 0);
EnlargeBufferIfNeeded(psize + usize + sizeof(uint64_t) + ts_sz);
if (psize > 0) {
memcpy(buf_, key_prefix.data(), psize);
}
memcpy(buf_ + psize, user_key.data(), usize);
if (ts) {
memcpy(buf_ + psize + usize, ts->data(), ts_sz);
}
EncodeFixed64(buf_ + usize + psize + ts_sz,
PackSequenceAndType(s, value_type));
key_ = buf_;
key_size_ = psize + usize + sizeof(uint64_t) + ts_sz;
is_user_key_ = false;
}
void SetInternalKey(const Slice& user_key, SequenceNumber s,
ValueType value_type = kValueTypeForSeek,
const Slice* ts = nullptr) {
SetInternalKey(Slice(), user_key, s, value_type, ts);
}
void Reserve(size_t size) {
EnlargeBufferIfNeeded(size);
key_size_ = size;
}
void SetInternalKey(const ParsedInternalKey& parsed_key) {
SetInternalKey(Slice(), parsed_key);
}
void SetInternalKey(const Slice& key_prefix,
const ParsedInternalKey& parsed_key_suffix) {
SetInternalKey(key_prefix, parsed_key_suffix.user_key,
parsed_key_suffix.sequence, parsed_key_suffix.type);
}
void EncodeLengthPrefixedKey(const Slice& key) {
auto size = key.size();
EnlargeBufferIfNeeded(size + static_cast<size_t>(VarintLength(size)));
char* ptr = EncodeVarint32(buf_, static_cast<uint32_t>(size));
memcpy(ptr, key.data(), size);
key_ = buf_;
is_user_key_ = true;
}
bool IsUserKey() const { return is_user_key_; }
private:
char* buf_;
const char* key_;
size_t key_size_;
size_t buf_size_;
char space_[39]; // Avoid allocation for short keys
bool is_user_key_;
Slice SetKeyImpl(const Slice& key, bool copy) {
size_t size = key.size();
if (copy) {
// Copy key to buf_
EnlargeBufferIfNeeded(size);
memcpy(buf_, key.data(), size);
key_ = buf_;
} else {
// Update key_ to point to external memory
key_ = key.data();
}
key_size_ = size;
return Slice(key_, key_size_);
}
void ResetBuffer() {
if (buf_ != space_) {
delete[] buf_;
buf_ = space_;
}
buf_size_ = sizeof(space_);
key_size_ = 0;
}
// Enlarge the buffer size if needed based on key_size.
// By default, static allocated buffer is used. Once there is a key
// larger than the static allocated buffer, another buffer is dynamically
// allocated, until a larger key buffer is requested. In that case, we
// reallocate buffer and delete the old one.
void EnlargeBufferIfNeeded(size_t key_size) {
// If size is smaller than buffer size, continue using current buffer,
// or the static allocated one, as default
if (key_size > buf_size_) {
EnlargeBuffer(key_size);
}
}
void EnlargeBuffer(size_t key_size);
void MaybeAddKeyPartsWithTimestamp(const char* slice_data,
const size_t slice_sz, bool add_timestamp,
const size_t left_sz,
const std::string& min_timestamp,
std::vector<Slice>& key_parts,
bool* ts_added) {
if (add_timestamp && !*ts_added) {
assert(slice_sz >= left_sz);
key_parts.emplace_back(slice_data, left_sz);
key_parts.emplace_back(min_timestamp);
key_parts.emplace_back(slice_data + left_sz, slice_sz - left_sz);
*ts_added = true;
} else {
key_parts.emplace_back(slice_data, slice_sz);
}
}
};
// Convert from a SliceTransform of user keys, to a SliceTransform of
// internal keys.
class InternalKeySliceTransform : public SliceTransform {
public:
explicit InternalKeySliceTransform(const SliceTransform* transform)
: transform_(transform) {}
const char* Name() const override { return transform_->Name(); }
Slice Transform(const Slice& src) const override {
auto user_key = ExtractUserKey(src);
return transform_->Transform(user_key);
}
bool InDomain(const Slice& src) const override {
auto user_key = ExtractUserKey(src);
return transform_->InDomain(user_key);
}
bool InRange(const Slice& dst) const override {
auto user_key = ExtractUserKey(dst);
return transform_->InRange(user_key);
}
const SliceTransform* user_prefix_extractor() const { return transform_; }
private:
// Like comparator, InternalKeySliceTransform will not take care of the
// deletion of transform_
const SliceTransform* const transform_;
};
// Read the key of a record from a write batch.
// if this record represent the default column family then cf_record
// must be passed as false, otherwise it must be passed as true.
bool ReadKeyFromWriteBatchEntry(Slice* input, Slice* key, bool cf_record);
// Read record from a write batch piece from input.
// tag, column_family, key, value and blob are return values. Callers own the
// slice they point to.
// Tag is defined as ValueType.
// input will be advanced to after the record.
// If user-defined timestamp is enabled for a column family, then the `key`
// resulting from this call will include timestamp.
Status ReadRecordFromWriteBatch(Slice* input, char* tag,
uint32_t* column_family, Slice* key,
Slice* value, Slice* blob, Slice* xid,
uint64_t* write_unix_time);
// When user call DeleteRange() to delete a range of keys,
// we will store a serialized RangeTombstone in MemTable and SST.
// the struct here is an easy-understood form
// start/end_key_ is the start/end user key of the range to be deleted
struct RangeTombstone {
Slice start_key_;
Slice end_key_;
SequenceNumber seq_;
// TODO: we should optimize the storage here when user-defined timestamp
// is NOT enabled: they currently take up (16 + 32 + 32) bytes per tombstone.
Slice ts_;
std::string pinned_start_key_;
std::string pinned_end_key_;
RangeTombstone() = default;
RangeTombstone(Slice sk, Slice ek, SequenceNumber sn)
: start_key_(sk), end_key_(ek), seq_(sn) {}
// User-defined timestamp is enabled, `sk` and `ek` should be user key
// with timestamp, `ts` will replace the timestamps in `sk` and
// `ek`.
// When `logical_strip_timestamp` is true, the timestamps in `sk` and `ek`
// will be replaced with min timestamp.
RangeTombstone(Slice sk, Slice ek, SequenceNumber sn, Slice ts,
bool logical_strip_timestamp)
: seq_(sn) {
const size_t ts_sz = ts.size();
assert(ts_sz > 0);
pinned_start_key_.reserve(sk.size());
pinned_end_key_.reserve(ek.size());
if (logical_strip_timestamp) {
AppendUserKeyWithMinTimestamp(&pinned_start_key_, sk, ts_sz);
AppendUserKeyWithMinTimestamp(&pinned_end_key_, ek, ts_sz);
} else {
AppendUserKeyWithDifferentTimestamp(&pinned_start_key_, sk, ts);
AppendUserKeyWithDifferentTimestamp(&pinned_end_key_, ek, ts);
}
start_key_ = pinned_start_key_;
end_key_ = pinned_end_key_;
ts_ = Slice(pinned_start_key_.data() + sk.size() - ts_sz, ts_sz);
}
RangeTombstone(ParsedInternalKey parsed_key, Slice value) {
start_key_ = parsed_key.user_key;
seq_ = parsed_key.sequence;
end_key_ = value;
}
// be careful to use Serialize(), allocates new memory
std::pair<InternalKey, Slice> Serialize() const {
auto key = InternalKey(start_key_, seq_, kTypeRangeDeletion);
return std::make_pair(std::move(key), end_key_);
}
// be careful to use SerializeKey(), allocates new memory
InternalKey SerializeKey() const {
return InternalKey(start_key_, seq_, kTypeRangeDeletion);
}
// The tombstone end-key is exclusive, so we generate an internal-key here
// which has a similar property. Using kMaxSequenceNumber guarantees that
// the returned internal-key will compare less than any other internal-key
// with the same user-key. This in turn guarantees that the serialized
// end-key for a tombstone such as [a-b] will compare less than the key "b".
//
// be careful to use SerializeEndKey(), allocates new memory
InternalKey SerializeEndKey() const {
if (!ts_.empty()) {
static constexpr char kTsMax[] = "\xff\xff\xff\xff\xff\xff\xff\xff\xff";
if (ts_.size() <= strlen(kTsMax)) {
return InternalKey(end_key_, kMaxSequenceNumber, kTypeRangeDeletion,
Slice(kTsMax, ts_.size()));
} else {
return InternalKey(end_key_, kMaxSequenceNumber, kTypeRangeDeletion,
std::string(ts_.size(), '\xff'));
}
}
return InternalKey(end_key_, kMaxSequenceNumber, kTypeRangeDeletion);
}
};
inline int InternalKeyComparator::Compare(const Slice& akey,
const Slice& bkey) const {