Skip to content

wwy155/NsDiff

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

35 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

🚀 This is the official repo of "Non-stationary Diffusion For Probabilistic Time Series Forecasting"

Contacts

News

📌 [2025-05-01] 🎉🎉🎉🎉🎉 NsDiff is accepted as a Spotlight poster at ICML 2025 — Oral decision pending 🔎

1 NsDiff

NsDiff is a new diffusion-based theoretical framework for probalistic forecasting. Specifically designed for non-stationary scenarios.

2 install requirements

pip install -r ./requirements.txt

3 run

⚠️⚠️⚠️⚠️The dataset will be downloaded automatically. Just run the following scripts.

see ./scripts/ for more examples.

  1. pretrain and run
#  pretraining
bash ./scripts/pretrain_F/ETTh1.sh
# run 
export PYTHONPATH=./
CUDA_DEVICE_ORDER=PCI_BUS_ID \
python3 ./src/experiments/NsDiff.py \
   --dataset_type="ETTh1" \
   --device="cuda:0" \
   --batch_size=32 \
   --horizon=1 \
   --pred_len=192 \
   --windows=168 \
   --load_pretrain=True \
   runs --seeds='[1232132, 3]'
  1. run without pretraining
# run without pretraining
export PYTHONPATH=./
CUDA_DEVICE_ORDER=PCI_BUS_ID \
python3 ./src/experiments/NsDiff.py \
   --dataset_type="ETTh1" \
   --device="cuda:0" \
   --batch_size=32 \
   --horizon=1 \
   --pred_len=192 \
   --windows=168 \
   runs --seeds='[1232132, 3]'

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published