-
Notifications
You must be signed in to change notification settings - Fork 69
/
test_CPD.py
50 lines (42 loc) · 1.6 KB
/
test_CPD.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
import torch
import torch.nn.functional as F
import numpy as np
import pdb, os, argparse
from scipy import misc
from model.CPD_models import CPD_VGG
from model.CPD_ResNet_models import CPD_ResNet
from data import test_dataset
parser = argparse.ArgumentParser()
parser.add_argument('--testsize', type=int, default=352, help='testing size')
parser.add_argument('--is_ResNet', type=bool, default=False, help='VGG or ResNet backbone')
opt = parser.parse_args()
dataset_path = 'path/dataset/'
if opt.is_ResNet:
model = CPD_ResNet()
model.load_state_dict(torch.load('CPD-R.pth'))
else:
model = CPD_VGG()
model.load_state_dict(torch.load('CPD.pth'))
model.cuda()
model.eval()
test_datasets = ['PASCAL', 'ECSSD', 'DUT-OMRON', 'DUTS-TEST', 'HKUIS']
for dataset in test_datasets:
if opt.is_ResNet:
save_path = './results/ResNet50/' + dataset + '/'
else:
save_path = './results/VGG16/' + dataset + '/'
if not os.path.exists(save_path):
os.makedirs(save_path)
image_root = dataset_path + dataset + '/images/'
gt_root = dataset_path + dataset + '/gts/'
test_loader = test_dataset(image_root, gt_root, opt.testsize)
for i in range(test_loader.size):
image, gt, name = test_loader.load_data()
gt = np.asarray(gt, np.float32)
gt /= (gt.max() + 1e-8)
image = image.cuda()
_, res = model(image)
res = F.upsample(res, size=gt.shape, mode='bilinear', align_corners=False)
res = res.sigmoid().data.cpu().numpy().squeeze()
res = (res - res.min()) / (res.max() - res.min() + 1e-8)
misc.imsave(save_path+name, res)