|
61 | 61 |
|
62 | 62 | <!-- 这里可写通用的实现逻辑 -->
|
63 | 63 |
|
| 64 | +**方法一:规律观察 + 状态压缩** |
| 65 | + |
| 66 | +在一个有效的棋盘中,有且仅有两种“行”。 |
| 67 | + |
| 68 | +例如,如果棋盘中有一行为“01010011”,那么任何其它行只能为“01010011”或者“10101100”。列也满足这种性质。 |
| 69 | + |
| 70 | +另外,每一行和每一列都有一半 $0$ 和一半 $1$。假设棋盘为 $n \times n$: |
| 71 | + |
| 72 | +- 若 $n = 2 \times k$,则每一行和每一列都有 $k$ 个 $1$ 和 $k$ 个 $0$。 |
| 73 | +- 若 $n = 2 \times k + 1$,则每一行都有 $k$ 个 $1$ 和 $k + 1$ 个 $0$,或者 $k + 1$ 个 $1$ 和 $k$ 个 $0$。 |
| 74 | + |
| 75 | +基于以上的结论,我们可以判断一个棋盘是否有效。若有效,可以计算出最小的移动次数。 |
| 76 | + |
| 77 | +若 $n$ 为偶数,最终的合法棋盘有两种可能,即第一行的元素为“010101...”,或者“101010...”。我们计算出这两种可能所需要交换的次数的较小值作为答案。 |
| 78 | + |
| 79 | +若 $n$ 为奇数,那么最终的合法棋盘只有一种可能。如果第一行中 $0$ 的数目大于 $1$,那么最终一盘的第一行只能是“01010...”,否则就是“10101...”。同样算出次数作为答案。 |
| 80 | + |
| 81 | +时间复杂度 $O(n^2)$。 |
| 82 | + |
64 | 83 | <!-- tabs:start -->
|
65 | 84 |
|
66 | 85 | ### **Python3**
|
67 | 86 |
|
68 | 87 | <!-- 这里可写当前语言的特殊实现逻辑 -->
|
69 | 88 |
|
70 | 89 | ```python
|
71 |
| - |
| 90 | +class Solution: |
| 91 | + def movesToChessboard(self, board: List[List[int]]) -> int: |
| 92 | + def f(mask, cnt): |
| 93 | + ones = mask.bit_count() |
| 94 | + if n & 1: |
| 95 | + if abs(n - 2 * ones) != 1 or abs(n - 2 * cnt) != 1: |
| 96 | + return -1 |
| 97 | + if ones == n // 2: |
| 98 | + return n // 2 - (mask & 0xAAAAAAAA).bit_count() |
| 99 | + return (n + 1) // 2 - (mask & 0x55555555).bit_count() |
| 100 | + else: |
| 101 | + if ones != n // 2 or cnt != n // 2: |
| 102 | + return -1 |
| 103 | + cnt0 = n // 2 - (mask & 0xAAAAAAAA).bit_count() |
| 104 | + cnt1 = n // 2 - (mask & 0x55555555).bit_count() |
| 105 | + return min(cnt0, cnt1) |
| 106 | + |
| 107 | + n = len(board) |
| 108 | + mask = (1 << n) - 1 |
| 109 | + rowMask = colMask = 0 |
| 110 | + for i in range(n): |
| 111 | + rowMask |= board[0][i] << i |
| 112 | + colMask |= board[i][0] << i |
| 113 | + revRowMask = mask ^ rowMask |
| 114 | + revColMask = mask ^ colMask |
| 115 | + sameRow = sameCol = 0 |
| 116 | + for i in range(n): |
| 117 | + curRowMask = curColMask = 0 |
| 118 | + for j in range(n): |
| 119 | + curRowMask |= board[i][j] << j |
| 120 | + curColMask |= board[j][i] << j |
| 121 | + if curRowMask not in (rowMask, revRowMask) or curColMask not in (colMask, revColMask): |
| 122 | + return -1 |
| 123 | + sameRow += curRowMask == rowMask |
| 124 | + sameCol += curColMask == colMask |
| 125 | + t1 = f(rowMask, sameRow) |
| 126 | + t2 = f(colMask, sameCol) |
| 127 | + return -1 if t1 == -1 or t2 == -1 else t1 + t2 |
72 | 128 | ```
|
73 | 129 |
|
74 | 130 | ### **Java**
|
75 | 131 |
|
76 | 132 | <!-- 这里可写当前语言的特殊实现逻辑 -->
|
77 | 133 |
|
78 | 134 | ```java
|
| 135 | +class Solution { |
| 136 | + private int n; |
| 137 | + |
| 138 | + public int movesToChessboard(int[][] board) { |
| 139 | + n = board.length; |
| 140 | + int mask = (1 << n) - 1; |
| 141 | + int rowMask = 0, colMask = 0; |
| 142 | + for (int i = 0; i < n; ++i) { |
| 143 | + rowMask |= board[0][i] << i; |
| 144 | + colMask |= board[i][0] << i; |
| 145 | + } |
| 146 | + int revRowMask = mask ^ rowMask; |
| 147 | + int revColMask = mask ^ colMask; |
| 148 | + int sameRow = 0, sameCol = 0; |
| 149 | + for (int i = 0; i < n; ++i) { |
| 150 | + int curRowMask = 0, curColMask = 0; |
| 151 | + for (int j = 0; j < n; ++j) { |
| 152 | + curRowMask |= board[i][j] << j; |
| 153 | + curColMask |= board[j][i] << j; |
| 154 | + } |
| 155 | + if (curRowMask != rowMask && curRowMask != revRowMask) { |
| 156 | + return -1; |
| 157 | + } |
| 158 | + if (curColMask != colMask && curColMask != revColMask) { |
| 159 | + return -1; |
| 160 | + } |
| 161 | + sameRow += curRowMask == rowMask ? 1 : 0; |
| 162 | + sameCol += curColMask == colMask ? 1 : 0; |
| 163 | + } |
| 164 | + int t1 = f(rowMask, sameRow); |
| 165 | + int t2 = f(colMask, sameCol); |
| 166 | + return t1 == -1 || t2 == -1 ? -1 : t1 + t2; |
| 167 | + } |
| 168 | + |
| 169 | + private int f(int mask, int cnt) { |
| 170 | + int ones = Integer.bitCount(mask); |
| 171 | + if (n % 2 == 1) { |
| 172 | + if (Math.abs(n - ones * 2) != 1 || Math.abs(n - cnt * 2) != 1) { |
| 173 | + return -1; |
| 174 | + } |
| 175 | + if (ones == n / 2) { |
| 176 | + return n / 2 - Integer.bitCount(mask & 0xAAAAAAAA); |
| 177 | + } |
| 178 | + return (n / 2 + 1) - Integer.bitCount(mask & 0x55555555); |
| 179 | + } else { |
| 180 | + if (ones != n / 2 || cnt != n / 2) { |
| 181 | + return -1; |
| 182 | + } |
| 183 | + int cnt0 = n / 2 - Integer.bitCount(mask & 0xAAAAAAAA); |
| 184 | + int cnt1 = n / 2 - Integer.bitCount(mask & 0x55555555); |
| 185 | + return Math.min(cnt0, cnt1); |
| 186 | + } |
| 187 | + } |
| 188 | +} |
| 189 | +``` |
| 190 | + |
| 191 | +### **C++** |
| 192 | + |
| 193 | +```cpp |
| 194 | +class Solution { |
| 195 | +public: |
| 196 | + int n; |
| 197 | + int movesToChessboard(vector<vector<int>>& board) { |
| 198 | + n = board.size(); |
| 199 | + int mask = (1 << n) - 1; |
| 200 | + int rowMask = 0, colMask = 0; |
| 201 | + for (int i = 0; i < n; ++i) { |
| 202 | + rowMask |= board[0][i] << i; |
| 203 | + colMask |= board[i][0] << i; |
| 204 | + } |
| 205 | + int revRowMask = mask ^ rowMask; |
| 206 | + int revColMask = mask ^ colMask; |
| 207 | + int sameRow = 0, sameCol = 0; |
| 208 | + for (int i = 0; i < n; ++i) { |
| 209 | + int curRowMask = 0, curColMask = 0; |
| 210 | + for (int j = 0; j < n; ++j) { |
| 211 | + curRowMask |= board[i][j] << j; |
| 212 | + curColMask |= board[j][i] << j; |
| 213 | + } |
| 214 | + if (curRowMask != rowMask && curRowMask != revRowMask) return -1; |
| 215 | + if (curColMask != colMask && curColMask != revColMask) return -1; |
| 216 | + sameRow += curRowMask == rowMask; |
| 217 | + sameCol += curColMask == colMask; |
| 218 | + } |
| 219 | + int t1 = f(rowMask, sameRow); |
| 220 | + int t2 = f(colMask, sameCol); |
| 221 | + return t1 == -1 || t2 == -1 ? -1 : t1 + t2; |
| 222 | + } |
| 223 | + |
| 224 | + int f(int mask, int cnt) { |
| 225 | + int ones = __builtin_popcount(mask); |
| 226 | + if (n & 1) { |
| 227 | + if (abs(n - ones * 2) != 1 || abs(n - cnt * 2) != 1) return -1; |
| 228 | + if (ones == n / 2) return n / 2 - __builtin_popcount(mask & 0xAAAAAAAA); |
| 229 | + return (n + 1) / 2 - __builtin_popcount(mask & 0x55555555); |
| 230 | + } else { |
| 231 | + if (ones != n / 2 || cnt != n / 2) return -1; |
| 232 | + int cnt0 = (n / 2 - __builtin_popcount(mask & 0xAAAAAAAA)); |
| 233 | + int cnt1 = (n / 2 - __builtin_popcount(mask & 0x55555555)); |
| 234 | + return min(cnt0, cnt1); |
| 235 | + } |
| 236 | + } |
| 237 | +}; |
| 238 | +``` |
79 | 239 |
|
| 240 | +### **Go** |
| 241 | + |
| 242 | +```go |
| 243 | +func movesToChessboard(board [][]int) int { |
| 244 | + n := len(board) |
| 245 | + mask := (1 << n) - 1 |
| 246 | + rowMask, colMask := 0, 0 |
| 247 | + for i := 0; i < n; i++ { |
| 248 | + rowMask |= board[0][i] << i |
| 249 | + colMask |= board[i][0] << i |
| 250 | + } |
| 251 | + revRowMask := mask ^ rowMask |
| 252 | + revColMask := mask ^ colMask |
| 253 | + sameRow, sameCol := 0, 0 |
| 254 | + for i := 0; i < n; i++ { |
| 255 | + curRowMask, curColMask := 0, 0 |
| 256 | + for j := 0; j < n; j++ { |
| 257 | + curRowMask |= board[i][j] << j |
| 258 | + curColMask |= board[j][i] << j |
| 259 | + } |
| 260 | + if curRowMask != rowMask && curRowMask != revRowMask { |
| 261 | + return -1 |
| 262 | + } |
| 263 | + if curColMask != colMask && curColMask != revColMask { |
| 264 | + return -1 |
| 265 | + } |
| 266 | + if curRowMask == rowMask { |
| 267 | + sameRow++ |
| 268 | + } |
| 269 | + if curColMask == colMask { |
| 270 | + sameCol++ |
| 271 | + } |
| 272 | + } |
| 273 | + f := func(mask, cnt int) int { |
| 274 | + ones := bits.OnesCount(uint(mask)) |
| 275 | + if n%2 == 1 { |
| 276 | + if abs(n-ones*2) != 1 || abs(n-cnt*2) != 1 { |
| 277 | + return -1 |
| 278 | + } |
| 279 | + if ones == n/2 { |
| 280 | + return n/2 - bits.OnesCount(uint(mask&0xAAAAAAAA)) |
| 281 | + } |
| 282 | + return (n+1)/2 - bits.OnesCount(uint(mask&0x55555555)) |
| 283 | + } else { |
| 284 | + if ones != n/2 || cnt != n/2 { |
| 285 | + return -1 |
| 286 | + } |
| 287 | + cnt0 := n/2 - bits.OnesCount(uint(mask&0xAAAAAAAA)) |
| 288 | + cnt1 := n/2 - bits.OnesCount(uint(mask&0x55555555)) |
| 289 | + return min(cnt0, cnt1) |
| 290 | + } |
| 291 | + } |
| 292 | + t1 := f(rowMask, sameRow) |
| 293 | + t2 := f(colMask, sameCol) |
| 294 | + if t1 == -1 || t2 == -1 { |
| 295 | + return -1 |
| 296 | + } |
| 297 | + return t1 + t2 |
| 298 | +} |
| 299 | + |
| 300 | +func abs(x int) int { |
| 301 | + if x < 0 { |
| 302 | + return -x |
| 303 | + } |
| 304 | + return x |
| 305 | +} |
| 306 | + |
| 307 | +func min(a, b int) int { |
| 308 | + if a < b { |
| 309 | + return a |
| 310 | + } |
| 311 | + return b |
| 312 | +} |
80 | 313 | ```
|
81 | 314 |
|
82 | 315 | ### **...**
|
|
0 commit comments