Skip to content

[ECCV 2024] Diff-Reg: Diffusion Model in Doubly Stochastic Matrix Space for Registration Problem

License

Notifications You must be signed in to change notification settings

wuqianliang/Diff-Reg

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

58 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

[ECCV2024] Diff-Reg: Diffusion Model in Doubly Stochastic Matrix Space for Registration Problem [Arxiv|ECCV2024]

👀 If you have any questions, please let me (wuqianliang@njust.edu.cn) know~

Installation

1. Please use the NVIDIA TITAN RTX or NVIDIA GeForce RTX 3090 GPU !! **If you switch to an RTX 4090 or a higher version GPU, you will need to re-train the model. We have test the Diff-Reg-4dmatch on the RTX 4090 GPU.**

2. Please utilize commands 'conda env create -f Diff-Reg-2d3d/eccv24_2d3d_env.yml', 'conda env create -f Diff-Reg-3dmatch/eccv24_3d_env.yml', and 'conda env create -f Diff-Reg-4dmatch/eccv24_4d_env.yml' to install environments for three tasks.

Pre-trained Weights

Please look at the release page for the pre-trained model weights of three experiments.

Data Preparation && Training

Our 2D3D registration code is mainly based on 2D3D-MATR, and our 3d registration code is based on Lepard. Please refer to Lepard and 2D3D-MATR.

Inference

For 3DMatch and 4DMatch:

python main.py --config configs/test/3dmatch.yaml --test_epoch=$epoch

python main.py --config configs/test/4dmatch.yaml --thr=0.55 --test_epoch=$epoch

For 2D-3D registration:

cd experiments/2d3dmatr.rgbdv2.stage4.level3.stage1; sh eval.sh $epoch

Results

Quantitative results on the 4DMatch and 4DLoMatch benchmarks. The best results are highlighted in bold, and the second-best results are underlined.

Category Method 4DMatch NFMR↑ 4DMatch IR↑ 4DLoMatch NFMR↑ 4DLoMatch IR↑
Scene Flow PointPWC 21.60 20.0 10.0 7.20
FLOT 27.10 24.90 15.20 10.70
Feature Matching D3Feat 55.50 54.70 27.40 21.50
Predator 56.40 60.40 32.10 27.50
Lepard 83.60 82.64 66.63 55.55
GeoTR 83.20 82.20 65.40 63.60
RoITr 83.00 84.40 69.40 67.60
DDPM Diff-Reg (Backbone) 85.47 81.15 72.37 59.50
Diff-Reg (steps=1) 85.23 83.85 73.19 65.26
Diff-Reg (steps=20) 90.25 87.98 77.15 67.00

Quantitative results on the 3DMatch and 3DLoMatch benchmarks. The best results are highlighted in bold, and the second-best results are underlined.

Method Reference 3DMatch FMR↑ 3DMatch IR↑ 3DMatch RR↑ 3DLoMatch FMR↑ 3DLoMatch IR↑ 3DLoMatch RR↑
FCGF ICCV 2019 95.20 56.90 88.20 60.90 21.40 45.80
D3Feat CVPR 2020 95.80 39.00 85.80 69.30 13.20 40.20
Predator CVPR 2021 96.70 58.00 91.80 78.60 26.70 62.40
Lepard CVPR 2022 97.95 57.61 93.90 84.22 27.83 70.63
GeoTR CVPR 2022 98.10 72.70 92.30 88.70 44.70 75.40
RoITr CVPR 2023 98.00 82.60 91.90 89.60 54.30 74.80
PEAL-3D CVPR 2023 98.50 73.30 94.20 87.60 49.00 79.00
Diff-Reg ECCV 2024 96.28 30.92 95.00 69.60 9.60 73.80

Evaluation results on RGB-D Scenes V2 [Li et al. 2023]. The best results are highlighted in bold, and the second-best results are underlined.

Model Scene-11 Scene-12 Scene-13 Scene-14 Mean
Mean depth (m) 1.74 1.66 1.18 1.39 1.49
Inlier Ratio ↑
FCGF-2D3D 6.8 8.5 11.8 5.4 8.1
P2-Net 9.7 12.8 17.0 9.3 12.2
Predator-2D3D 17.7 19.4 17.2 8.4 15.7
2D3D-MATR 32.8 34.4 39.2 23.3 32.4
FreeReg 36.6 34.5 34.2 18.2 30.9
Diff-Reg (dino) 38.6 37.4 45.4 31.6 38.3
Diff-Reg (dino/backbone) 44.9 49.5 38.3 33.1 41.4
Diff-Reg (dino/steps=1) 47.5 48.9 32.8 22.4 37.9
Diff-Reg (dino/steps=10) 47.2 48.7 32.9 22.4 37.8
Feature Matching Recall ↑
FCGF-2D3D 11.10 30.40 51.50 15.50 27.10
P2-Net 48.60 65.70 82.50 41.6 59.60
Predator-2D3D 86.10 89.20 63.90 24.30 65.90
2D3D-MATR 98.60 98.00 88.70 77.90 90.80
FreeReg 91.90 93.40 93.10 49.60 82.00
Diff-Reg (dino) 100.0 100.0 89.70 81.9 92.9
Diff-Reg (dino/backbone) 100.0 100.0 92.8 91.2 96.0
Diff-Reg (dino/steps=1) 100.0 100.0 88.7 76.5 91.3
Diff-Reg (dino/steps=10) 100.0 100.0 88.7 77.0 91.4
Registration Recall ↑
FCGF-2D3D 26.4 41.2 37.1 16.8 30.4
P2-Net 40.3 40.2 41.2 31.9 38.4
Predator-2D3D 44.4 41.2 21.6 13.7 30.2
2D3D-MATR 63.9 53.9 58.8 49.1 56.4
FreeReg+Kabsch 38.7 51.6 30.7 15.5 34.1
FreeReg+PnP 74.2 72.5 54.5 27.9 57.3
Diff-Reg (dino) 87.5 86.3 63.9 60.6 74.6
Diff-Reg (dino/backbone) 79.2 86.3 75.3 71.2 78.0
Diff-Reg (dino/steps=1) 98.6 100.0 87.6 66.8 88.3
Diff-Reg (dino/steps=10) 98.6 96.1 83.5 63.7 85.5

Evaluation results on 7Scenes [Li et al. 2023]. The best results are highlighted in bold, and the second-best results are underlined.

Model Chess Fire Heads Office Pumpkin Kitchen Stairs Mean
Mean depth (m) 1.78 1.55 0.80 2.03 2.25 2.13 1.84 1.77
Inlier Ratio ↑
FCGF-2D3D [Choy et al. 2019] 34.2 32.8 14.8 26.0 23.3 22.5 6.0 22.8
P2-Net [Choy et al. 2019] 55.2 46.7 13.0 36.2 32.0 32.8 5.8 31.7
Predator-2D3D [Huang et al. 2021] 34.7 33.8 16.6 25.9 23.1 22.2 7.5 23.4
2D3D-MATR [Li et al. 2023] 72.1 66.0 31.3 60.7 50.2 52.5 18.1 50.1
Diff-PnP (dino/backbone) 79.2 71.0 54.1 70.4 55.8 60.2 22.9 59.1
Diff-PnP (dino/steps=10) 73.3 60.8 45.5 63.1 47.8 53.3 20.4 52.0
Feature Matching Recall ↑
FCGF-2D3D [Choy et al. 2019] 99.7 98.2 69.9 97.1 83.0 87.7 16.2 78.8
P2-Net [Choy et al. 2019] 100.0 99.3 58.9 99.1 87.2 92.2 16.2 79.0
Predator-2D3D [Huang et al. 2021] 91.3 95.1 76.7 88.6 79.2 80.6 31.1 77.5
2D3D-MATR [Li et al. 2023] 100.0 99.6 98.6 100.0 92.4 95.9 58.1 92.1
Diff-PnP (dino/backbone) 100.0 100.0 100.0 100.0 91.3 98.1 58.1 92.5
Diff-PnP (dino/steps=10) 100.0 98.5 97.3 100.0 87.8 96.8 60.8 91.6
Registration Recall ↑
FCGF-2D3D [Choy et al. 2019] 89.5 79.7 19.2 85.9 69.4 79.0 6.8 61.4
P2-Net [Choy et al. 2019] 96.9 86.5 20.5 91.7 75.3 85.2 4.1 65.7
Predator-2D3D [Huang et al. 2021] 69.6 60.7 17.8 62.9 56.2 62.6 9.5 48.5
2D3D-MATR [Li et al. 2023] 96.9 90.7 52.1 95.5 80.9 86.1 28.4 75.8
Diff-PnP (dino/backbone) 100.0 94.0 90.4 99.3 81.2 94.6 27.0 83.8
Diff-PnP (dino/steps=10) 99.3 94.3 91.8 99.1 79.9 91.8 25.7 83.1

♥️ Acknowledgement

We thank the respective authors of Lepard,2D3D-MATR, GeoTR,RoITR,GraphSCNet, and Vision3D for their open source code.

Citation

Please consider citing the following BibTeX entry if you find our work helpful for your research.

@article{wu2024diff,
  title={Diff-Reg v1: Diffusion Matching Model for Registration Problem},
  author={Wu, Qianliang and Jiang, Haobo and Luo, Lei and Li, Jun and Ding, Yaqing and Xie, Jin and Yang, Jian},
  journal={arXiv preprint arXiv:2403.19919},
  year={2024}
}


About

[ECCV 2024] Diff-Reg: Diffusion Model in Doubly Stochastic Matrix Space for Registration Problem

Resources

License

Stars

Watchers

Forks

Packages

No packages published