-
Notifications
You must be signed in to change notification settings - Fork 5
/
segment_leg.m
executable file
·101 lines (72 loc) · 2.68 KB
/
segment_leg.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
function person = segment_leg(person,S)
P = person.segment(S).origin + person.segment(S).offset;
R = person.segment(S).Rglobal;
N = person.segment(S).Ncalc;
ind = 1:N;
PI = person.const.pi;
%% Measurements
L = person.meas{S}.length;
a = person.resample(person,S,person.meas{S}.diam)/2;
u = person.resample(person,S,person.meas{S}.perim);
b = person.solve_ellipse(a,u);
r = person.meas{S}.ankle/2;
r_a = 0.59*r;
gamma = person.resample(person,S,cellfun( @(x) x(person.sex), person.density.leg ));
gamma_b = person.density.ankle;
%% Calculations
% Volume
v = PI*a.*b*L/N;
v_b = 0.59*r^3*PI/2; % 0.59*r*PI/2 = 0.9268*r =~ 0.92*r as per Hatze and fortran code
volume = sum(v) + 2*v_b;
% Mass
m = gamma.*v;
m_b = gamma_b*v_b; % ankle
mass = sum(m) + 2*m_b;
% Mass centroid:
xc = 0;
yc = 0;
zc = (-2*m_b*L - sum(m.*(2*ind-1)*L/20))./mass;
% Moments of inertia:
I_xi = m.*(3*b.^2+(L/N)^2)/12;
I_yi = m.*(3*a.^2+(L/N)^2)/12;
I_zi = m.*(a.^2+b.^2)/(4); %fortran code has subroutine "ELZIN" which does:
% ... sum(gamma*a.*b.*u.^2)*L/251.3274 = m*u^2/(8*PI^2) = I_z/(2*PI) ...
%IF u^2/(2*PI^2)=a^2+b^2
% principal moments of inertia;
Ip_x = 2*m_b*(0.33*r^2+(L+zc)^2) + sum(I_xi + m.*(L*(2*ind-1)/20+zc).^2);
Ip_y = 2*m_b*(0.1859*r^2 + (L+zc)^2 + (a(N)+0.196*r)^2) + sum(I_yi + m.*(L*(2*ind-1)/20+zc).^2);
Ip_z = 2*m_b*(0.1859*r^2 + (a(N)+0.196*r)^2) + sum(I_zi);
% principal moments of inertia w.r.t local systems origin
PIOX=Ip_x+mass*zc^2;
PIOY=Ip_y+mass*zc^2;
PIOZ=Ip_z;
%coordinates of origin of axes
OX = 0;
OY = 0;
OZ = -person.meas{S-1}.length_long;
person.segment(S).mass = mass;
person.segment(S).volume = volume;
person.segment(S).centroid = [xc; yc; zc];
person.segment(S).Minertia = [Ip_x,Ip_y,Ip_z];
Q = P+person.segment(S).Rglobal*[0;0;-L];
person.segment(S+1).origin = Q;
%% Plot
if person.plot || person.segment(S).plot
opt = {'opacity',person.segment(S).opacity(1),'edgeopacity',person.segment(S).opacity(2),'colour',person.segment(S).colour};
for ii = ind
ph = -ii*L/N; % plate height
plot_elliptic_plate(P+R*[0;0;ph],[a(ii) b(ii)],L/N,opt{:},'rotate',R)
end
%% sideways paraboloids
a = r;
b = r;
n = 10;
nu = linspace(0,2*PI,n); % row
u = linspace(0,r_a,n)'; % column
x = a*sqrt(u/r_a)*cos(nu);
y = b*sqrt(u/r_a)*sin(nu);
z = u*ones(1,n);
surf(Q(1)+z-a-r_a,Q(2)+y,Q(3)+x,'facealpha',person.segment(S).opacity(1),'edgealpha',person.segment(S).opacity(2),'facecolor',person.segment(S).colour)
surf(Q(1)-z+a+r_a,Q(2)+y,Q(3)+x,'facealpha',person.segment(S).opacity(1),'edgealpha',person.segment(S).opacity(2),'facecolor',person.segment(S).colour)
end
end