-
Notifications
You must be signed in to change notification settings - Fork 0
/
cpcommon_cpaal5.c
728 lines (645 loc) · 25.7 KB
/
cpcommon_cpaal5.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
#ifndef _INC_CPCOMMON_C
#define _INC_CPCOMMON_C
#ifdef _CPHAL_CPMAC
#include "cpremap_cpmac.c"
#endif
#ifdef _CPHAL_AAL5
#include "cpremap_cpaal5.c"
#endif
#ifdef _CPHAL_CPSAR
#include "cpremap_cpsar.c"
#endif
#ifdef _CPHAL_AAL2
#include "cpremap_cpaal2.c"
#endif
/**
@defgroup Common_Config_Params Common Configuration Parameters
This section documents the configuration parameters that are valid across
all CPHAL devices.
@{
*/
/** This is the debug level. The field is bit defined, such that the user
should set to 1 all the bits corresponding to desired debug outputs. The following
are the meanings for each debug bit:
- bit0 (LSB): CPHAL Function Trace
- b1 : OS Function call trace
- b2 : Critical section entry/exit
- b3 : Memory allocation/destruction
- b4 : Detailed information in Rx path
- b5 : Detailed information in Tx path
- b6 : Extended error information
- b7 : General info
*/
static const char pszDebug[] = "debug";
/** CPU Frequency. */
/*static const char pszCpuFreq[] = "CpuFreq";*/ /*MJH-030403*/
/** Base address for the module. */
static const char pszBase[] = "base";
/** Reset bit for the module. */
static const char pszResetBit[] = "reset_bit";
/** Reset base address for the module. */
static const char pszResetBase[] = "ResetBase";
/** Interrupt line for the module. */
static const char pszIntLine[] = "int_line";
/** VLYNQ offset for the module. Disregard if not using VLYNQ. */
static const char pszOffset[] = "offset";
/** The OS may "Get" this parameter, which is a pointer
to a character string that indicates the version of CPHAL. */
static const char pszVer[] = "Version";
/*@}*/
/**
@defgroup Common_Control_Params Common Keys for [os]Control()
This section documents the keys used with the OS @c Control() interface that
are required by CPHAL devices.
@{
*/
/** Used to wait for an integer number of clock ticks, given as an integer
pointer in the @p Value parameter. No actions are defined. */
static const char pszSleep[] = "Sleep";
/** Requests the OS to flush it's IO buffers. No actions are defined. */
static const char pszSioFlush[] = "SioFlush";
/*@}*/
static const char pszStateChange[] = "StateChange";
static const char pszStatus[] = "Status";
static const char pszGET[] = "Get";
static const char pszSET[] = "Set";
static const char pszCLEAR[] = "Clear";
static const char pszNULL[] = "";
static const char pszLocator[] = "Locator";
static const char pszOff[] = "Off";
static const char pszOn[] = "On";
static const char hcMaxFrags[] = "MaxFrags";
#ifdef _CPHAL_CPMAC
/* New method for string constants */
const char hcClear[] = "Clear";
const char hcGet[] = "Get";
const char hcSet[] = "Set";
const char hcTick[] = "Tick";
static const CONTROL_KEY KeyCommon[] =
{
{"" , enCommonStart},
{pszStatus , enStatus},
{pszOff , enOff},
{pszOn , enOn},
{pszDebug , enDebug},
{hcCpuFrequency , enCpuFreq}, /*MJH~030403*/
{"" , enCommonEnd}
};
#endif
/**
@defgroup Common_Statistics Statistics
A broad array of module statistics is available. Statistics values are accessed
through the @c Control() interface of the CPHAL. There are 5 different levels
of statistics, each of which correspond to a unique set of data. Furthermore,
certain statistics data is indexed by using a channel number and Tx queue number.
The following is a brief description of each statistics level, along with the
indexes used for the level:
- Level 0: Hardware Statistics (index with channel)
- Level 1: CPHAL Software Statistics (channel, queue)
- Level 2: CPHAL Flags (channel, queue)
- Level 3: CPHAL Channel Configuration (channel)
- Level 4: CPHAL General Configuration (no index)
The caller requests statistics information by providing a Key string to the
@c Control() API in the following format: "Stats;[Level #];[Ch #];[Queue #]".
The only valid Action parameter for statistics usage is "Get".
Code Examples:
@code
unsigned int *StatsData;
# Get Level 0 stats for Channel 1
HalFunc->Control(OsDev->HalDev, "Stats;0;1", "Get", &StatsData);
# Get Level 2 stats for Channel 0, Queue 0
HalFunc->Control(OsDev->HalDev, "Stats;2;0;0", "Get", &StatsData);
# Get Level 4 stats
HalFunc->Control(OsDev->HalDev, "Stats;4", "Get", &StatsData);
@endcode
The information returned in the Value parameter of @c Control() is an
array of pointers to strings. The pointers are arranged in pairs.
The first pointer is a pointer to a name string for a particular statistic.
The next pointer is a pointer to a string containing the representation of
the integer statistic value corresponding to the first pointer. This is followed
by another pair of pointers, and so on, until a NULL pointer is encountered. The
following is example code for processing the statistics data. Note that the OS
is responsible for freeing the memory passed back through the Value parameter of
@c Control().
@code
unsigned int *StatsData;
# Get Level 0 stats for Channel 1
HalFunc->Control(OsDev->HalDev, "Stats;0;1", "Get", &StatsData);
# output Statistics data
PrintStats(StatsData);
# the upper layer is responsible for freeing stats info
free(&StatsPtr);
...
void PrintStats(unsigned int *StatsPtr)
{
while(*StatsPtr)
{
printf("%20s:", (char *)*StatsPtr);
StatsPtr++;
printf("%11s\n", (char *)*StatsPtr);
StatsPtr++;
}
MySioFlush();
}
@endcode
Within each statistics level, there are several statistics defined. The statistics that
are common to every CPPI module are listed below. In addition, each module may define
extra statistics in each level, which will be documented within the module-specific
documentation appendices.
- Level 0 Statistics
- All level 0 statistics are module-specific.
- Level 1 Statistics (CPHAL Software Statistics)
- DmaLenErrors: Incremented when the port DMA's more data than expected (per channel). (AAL5 Only)
- TxMisQCnt: Incremented when host queues a packet for transmission as the port finishes
transmitting the previous last packet in the queue (per channel and queue).
- RxMisQCnt: Incremented when host queues adds buffers to a queue as the port finished the
reception of the previous last packet in the queue (per channel).
- TxEOQCnt: Number of times the port has reached the end of the transmit queue (per channel and queue).
- RxEOQCnt: Number of times the port has reached the end of the receive queue (per channel).
- RxPacketsServiced: Number of received packets (per channel).
- TxPacketsServiced: Number of transmitted packets (per channel and queue).
- RxMaxServiced: Maximum number of packets that the CPHAL receive interrupt has serviced at a time (per channel).
- TxMaxServiced: Maximum number of packets that the CPHAL transmit interrupt has serviced at a time (per channel and queue).
- RxTotal: Total number of received packets, all channels.
- TxTotal: Total number of transmitted packets, all channels and queues.
- Level 2 Statistics (CPHAL Flags)
- RcbPool: Pointer to receive descriptor pool (per channel).
- RxActQueueCount: Number of buffers currently available for receive (per channel).
- RxActQueueHead: Pointer to first buffer in receive queue (per channel).
- RxActQueueTail: Pointer to last buffer in receive queue (per channel).
- RxActive: 0 if inactive (no buffers available), or 1 if active (buffers available).
- RcbStart: Pointer to block of receive descriptors.
- RxTeardownPending: 1 if Rx teardown is pending but incomplete, 0 otherwise.
- TcbPool: Pointer to transmit descriptor pool (per channel and queue).
- TxActQueueCount: Number of buffers currently queued to be transmitted (per channel and queue).
- TxActQueueHead: Pointer to first buffer in transmit queue (per channel and queue).
- TxActQueueTail: Pointer to last buffer in transmit queue (per channel and queue).
- TxActive: 0 if inactive (no buffers to send), or 1 if active (buffers queued to send).
- TcbStart: Pointer to block of transmit descriptors.
- TxTeardownPending: 1 if Tx teardown is pending but incomplete, 0 otherwise.
- Level 3 Statistics (CPHAL Channel Configuration)
- RxBufSize: Rx buffer size.
- RxBufferOffset: Rx buffer offset.
- RxNumBuffers: Number of Rx buffers.
- RxServiceMax: Maximum number of receive packets to service at a time.
- TxNumBuffers: Number of Tx buffer descriptors.
- TxNumQueues: Number of Tx queues to use.
- TxServiceMax: Maximum number of transmit packets to service at a time.
- Level 4 Statistics (CPHAL General Configuration)
- Base Address: Base address of the module.
- Offset (VLYNQ): VLYNQ relative module offset.
- Interrupt Line: Interrupt number.
- Debug: Debug flag, 1 to enable debug.
- Inst: Instance number.
*/
/*
Data Type 0 = int display
Data Type 1 = hex display
Data Type 2 = channel structure, int display
Data Type 3 = queue index and int display
Data Type 4 = queue index and hex display
*/
#if (defined(_CPHAL_AAL5) || defined(_CPHAL_CPMAC)) /* +GSG 030307 */
static STATS_TABLE StatsTable0[] =
{
#ifdef _CPHAL_AAL5
/* Name , Data Ptr, Data Type */
{"Crc Errors", 0, 0},
{"Len Errors", 0, 0},
{"Abort Errors", 0, 0},
{"Starv Errors", 0, 0}
#endif
#ifdef _CPHAL_CPMAC
{"Rx Good Frames", 0, 0}
#endif
};
static STATS_TABLE StatsTable1[] =
{
/* Name , Data Ptr, Data Type */
{"DmaLenErrors", 0, 0},
{"TxMisQCnt", 0, 3},
{"RxMisQCnt", 0, 0},
{"TxEOQCnt", 0, 3},
{"RxEOQCnt", 0, 0},
{"RxPacketsServiced", 0, 0},
{"TxPacketsServiced", 0, 3},
{"RxMaxServiced", 0, 0},
{"TxMaxServiced", 0, 3},
{"RxTotal", 0, 0},
{"TxTotal", 0, 0},
};
static STATS_TABLE StatsTable2[] =
{
/* Name , Data Ptr, Data Type */
{"RcbPool", 0, 1},
{"RxActQueueCount", 0, 0},
{"RxActQueueHead", 0, 1},
{"RxActQueueTail", 0, 1},
{"RxActive", 0, 0},
{"RcbStart", 0, 1},
{"RxTeardownPending", 0, 0},
{"TcbPool", 0, 4},
{"TxActQueueCount", 0, 3},
{"TxActQueueHead", 0, 4},
{"TxActQueueTail", 0, 4},
{"TxActive", 0, 3},
{"TcbStart", 0, 4},
{"TxTeardownPending", 0, 0}
};
static STATS_TABLE StatsTable3[] =
{
/* Name , Data Ptr, Data Type */
{"RxBufSize", 0, 2},
{"RxBufferOffset", 0, 2},
{"RxNumBuffers", 0, 2},
{"RxServiceMax", 0, 2},
{"TxNumBuffers", 0, 2},
{"TxNumQueues", 0, 2},
{"TxServiceMax", 0, 2},
#ifdef _CPHAL_AAL5
{"CpcsUU", 0, 2},
{"Gfc", 0, 2},
{"Clp", 0, 2},
{"Pti", 0, 2},
{"DaMask", 0, 2},
{"Priority", 0, 2},
{"PktType", 0, 2},
{"Vci", 0, 2},
{"Vpi", 0, 2},
{"CellRate", 0, 2},
{"QosType", 0, 2},
{"Mbs", 0, 2},
{"Pcr", 0, 2}
#endif
};
static STATS_TABLE StatsTable4[] =
{
{"Base Address", 0, 1},
{"Offset (VLYNQ)", 0, 0},
{"Interrupt Line", 0, 0},
{"Debug", 0, 0},
{"Instance", 0, 0},
#ifdef _CPHAL_AAL5
{"UniNni", 0, 0}
#endif
};
static STATS_DB StatsDb[] =
{
{(sizeof(StatsTable0)/sizeof(STATS_TABLE)), StatsTable0},
{(sizeof(StatsTable1)/sizeof(STATS_TABLE)), StatsTable1},
{(sizeof(StatsTable2)/sizeof(STATS_TABLE)), StatsTable2},
{(sizeof(StatsTable3)/sizeof(STATS_TABLE)), StatsTable3},
{(sizeof(StatsTable4)/sizeof(STATS_TABLE)), StatsTable4}
};
#endif /* +GSG 030307 */
#ifdef _CPHAL_CPMAC /* +RC 3.02 */
static void resetWait(HAL_DEVICE *HalDev)
{ /*+RC3.02*/
const int TickReset=64;
osfuncSleep((int*)&TickReset);
} /*+RC3.02*/
#endif /* +RC 3.02 */
/* I only define the reset base function for the modules
that can perform a reset. The AAL5 and AAL2 modules
do not perform a reset, that is done by the shared module
CPSAR */
#if defined(_CPHAL_CPSAR) || defined(_CPHAL_CPMAC) || defined(_CPHAL_VDMAVT)
/*
* Determines the reset register address to be used for a particular device.
* It will search the current device entry for Locator information. If the
* device is a root device, there will be no Locator information, and the
* function will find and return the root reset register. If a Locator value
* is found, the function will search each VLYNQ device entry in the system
* looking for a matching Locator. Once it finds a VLYNQ device entry with
* a matching Locator, it will extract the "ResetBase" parameter from that
* VLYNQ device entry (thus every VLYNQ entry must have the ResetBase parameter).
*
* @param HalDev CPHAL module instance. (set by xxxInitModule())
* @param ResetBase Pointer to integer address of reset register.
*
* @return 0 OK, Non-zero not OK
*/
static int ResetBaseGet(HAL_DEVICE *HalDev, bit32u *ResetBase)
{
char *DeviceInfo = HalDev->DeviceInfo;
char *MyLocator, *NextLocator;
int Inst=1;
bit32u error_code;
#ifdef __CPHAL_DEBUG
if (DBG(0))
{
dbgPrintf("[cpcommon]ResetBaseGet(HalDev:%08x, ResetBase:%08x)\n", (bit32u)HalDev, ResetBase);
osfuncSioFlush();
}
#endif
error_code = HalDev->OsFunc->DeviceFindParmValue(DeviceInfo, "Locator", &MyLocator);
if (error_code)
{
/* if no Locator value, device is on the root, so get the "reset" device */
error_code = HalDev->OsFunc->DeviceFindInfo(0, "reset", &DeviceInfo);
if (error_code)
{
return(EC_VAL_DEVICE_NOT_FOUND);
}
error_code = HalDev->OsFunc->DeviceFindParmUint(DeviceInfo, "base", ResetBase);
if (error_code)
{
return(EC_VAL_BASE_ADDR_NOT_FOUND);
}
*ResetBase = ((bit32u)PhysToVirtNoCache(*ResetBase));
/* found base address for root device, so we're done */
return (EC_NO_ERRORS);
}
else
{
/* we have a Locator value, so the device is remote */
/* Find a vlynq device with a matching locator value */
while ((HalDev->OsFunc->DeviceFindInfo(Inst, "vlynq", &DeviceInfo)) == EC_NO_ERRORS)
{
error_code = HalDev->OsFunc->DeviceFindParmValue(DeviceInfo, "Locator", &NextLocator);
if (error_code)
{
/* no Locator value for this VLYNQ, so move on */
continue;
}
if (HalDev->OsFunc->Strcmpi(MyLocator, NextLocator)==0)
{
/* we have found a VLYNQ with a matching Locator, so extract the ResetBase */
error_code = HalDev->OsFunc->DeviceFindParmUint(DeviceInfo, "ResetBase", ResetBase);
if (error_code)
{
return(EC_VAL_BASE_ADDR_NOT_FOUND);
}
*ResetBase = ((bit32u)PhysToVirtNoCache(*ResetBase));
/* found base address for root device, so we're done */
return (EC_NO_ERRORS);
}
Inst++;
} /* while */
} /* else */
return (EC_NO_ERRORS);
}
#endif
#ifndef _CPHAL_AAL2 /* + RC 3.02 */
static bit32u ConfigGetCommon(HAL_DEVICE *HalDev)
{
bit32u ParmValue;
bit32 error_code;
char *DeviceInfo = HalDev->DeviceInfo;
#ifdef __CPHAL_DEBUG
if (DBG(0))
{
dbgPrintf("[cpcommon]ConfigGetCommon(HalDev:%08x)\n", (bit32u)HalDev);
osfuncSioFlush();
}
#endif
error_code = HalDev->OsFunc->DeviceFindParmUint(DeviceInfo, pszBase, &ParmValue);
if (error_code)
{
return(EC_FUNC_HAL_INIT|EC_VAL_BASE_ADDR_NOT_FOUND);
}
HalDev->dev_base = ((bit32u)PhysToVirtNoCache(ParmValue));
#ifndef _CPHAL_AAL5
#ifndef _CPHAL_AAL2
error_code = HalDev->OsFunc->DeviceFindParmUint(DeviceInfo, pszResetBit, &ParmValue);
if(error_code)
{
return(EC_FUNC_HAL_INIT|EC_VAL_RESET_BIT_NOT_FOUND);
}
HalDev->ResetBit = ParmValue;
/* Get reset base address */
error_code = ResetBaseGet(HalDev, &ParmValue);
if (error_code)
return(EC_FUNC_HAL_INIT|EC_VAL_RESET_BASE_NOT_FOUND);
HalDev->ResetBase = ParmValue;
#endif
#endif
#ifndef _CPHAL_CPSAR
error_code = HalDev->OsFunc->DeviceFindParmUint(DeviceInfo, pszIntLine,&ParmValue);
if (error_code)
{
return(EC_FUNC_HAL_INIT|EC_VAL_INTERRUPT_NOT_FOUND);
}
HalDev->interrupt = ParmValue;
#endif
/* only look for the offset if there is a Locator field, which indicates that
the module is a VLYNQ module */
error_code = HalDev->OsFunc->DeviceFindParmUint(DeviceInfo, pszLocator,&ParmValue);
if (!error_code)
{
error_code = HalDev->OsFunc->DeviceFindParmUint(DeviceInfo, pszOffset,&ParmValue);
if (error_code)
{
return(EC_FUNC_HAL_INIT|EC_VAL_OFFSET_NOT_FOUND);
}
HalDev->offset = ParmValue;
}
else
HalDev->offset = 0;
error_code = HalDev->OsFunc->DeviceFindParmUint(DeviceInfo, pszDebug, &ParmValue);
if (!error_code) HalDev->debug = ParmValue;
return (EC_NO_ERRORS);
}
#endif /* +RC 3.02 */
#ifdef _CPHAL_CPMAC /* +RC 3.02 */
static void StatsInit(HAL_DEVICE *HalDev) /* +() RC3.02 */
{
/* even though these statistics may be for multiple channels and
queues, i need only configure the pointer to the beginning
of the array, and I can index from there if necessary */
#ifdef _CPHAL_AAL5
StatsTable0[0].StatPtr = &HalDev->Stats.CrcErrors[0];
StatsTable0[1].StatPtr = &HalDev->Stats.LenErrors[0];
StatsTable0[2].StatPtr = &HalDev->Stats.AbortErrors[0];
StatsTable0[3].StatPtr = &HalDev->Stats.StarvErrors[0];
StatsTable1[0].StatPtr = &HalDev->Stats.DmaLenErrors[0];
StatsTable1[1].StatPtr = &HalDev->Stats.TxMisQCnt[0][0];
StatsTable1[2].StatPtr = &HalDev->Stats.RxMisQCnt[0];
StatsTable1[3].StatPtr = &HalDev->Stats.TxEOQCnt[0][0];
StatsTable1[4].StatPtr = &HalDev->Stats.RxEOQCnt[0];
StatsTable1[5].StatPtr = &HalDev->Stats.RxPacketsServiced[0];
StatsTable1[6].StatPtr = &HalDev->Stats.TxPacketsServiced[0][0];
StatsTable1[7].StatPtr = &HalDev->Stats.RxMaxServiced;
StatsTable1[8].StatPtr = &HalDev->Stats.TxMaxServiced[0][0];
StatsTable1[9].StatPtr = &HalDev->Stats.RxTotal;
StatsTable1[10].StatPtr = &HalDev->Stats.TxTotal;
#endif
#if (defined(_CPHAL_AAL5) || defined(_CPHAL_CPMAC))
StatsTable2[0].StatPtr = (bit32u *)&HalDev->RcbPool[0];
StatsTable2[1].StatPtr = &HalDev->RxActQueueCount[0];
StatsTable2[2].StatPtr = (bit32u *)&HalDev->RxActQueueHead[0];
StatsTable2[3].StatPtr = (bit32u *)&HalDev->RxActQueueTail[0];
StatsTable2[4].StatPtr = &HalDev->RxActive[0];
StatsTable2[5].StatPtr = (bit32u *)&HalDev->RcbStart[0];
StatsTable2[6].StatPtr = &HalDev->RxTeardownPending[0];
StatsTable2[7].StatPtr = (bit32u *)&HalDev->TcbPool[0][0];
StatsTable2[8].StatPtr = &HalDev->TxActQueueCount[0][0];
StatsTable2[9].StatPtr = (bit32u *)&HalDev->TxActQueueHead[0][0];
StatsTable2[10].StatPtr = (bit32u *)&HalDev->TxActQueueTail[0][0];
StatsTable2[11].StatPtr = &HalDev->TxActive[0][0];
StatsTable2[12].StatPtr = (bit32u *)&HalDev->TcbStart[0][0];
StatsTable2[13].StatPtr = &HalDev->TxTeardownPending[0];
StatsTable3[0].StatPtr = &HalDev->ChData[0].RxBufSize;
StatsTable3[1].StatPtr = &HalDev->ChData[0].RxBufferOffset;
StatsTable3[2].StatPtr = &HalDev->ChData[0].RxNumBuffers;
StatsTable3[3].StatPtr = &HalDev->ChData[0].RxServiceMax;
StatsTable3[4].StatPtr = &HalDev->ChData[0].TxNumBuffers;
StatsTable3[5].StatPtr = &HalDev->ChData[0].TxNumQueues;
StatsTable3[6].StatPtr = &HalDev->ChData[0].TxServiceMax;
#ifdef _CPHAL_AAL5
StatsTable3[7].StatPtr = &HalDev->ChData[0].CpcsUU;
StatsTable3[8].StatPtr = &HalDev->ChData[0].Gfc;
StatsTable3[9].StatPtr = &HalDev->ChData[0].Clp;
StatsTable3[10].StatPtr = &HalDev->ChData[0].Pti;
StatsTable3[11].StatPtr = &HalDev->ChData[0].DaMask;
StatsTable3[12].StatPtr = &HalDev->ChData[0].Priority;
StatsTable3[13].StatPtr = &HalDev->ChData[0].PktType;
StatsTable3[14].StatPtr = &HalDev->ChData[0].Vci;
StatsTable3[15].StatPtr = &HalDev->ChData[0].Vpi;
StatsTable3[16].StatPtr = &HalDev->ChData[0].TxVc_CellRate;
StatsTable3[17].StatPtr = &HalDev->ChData[0].TxVc_QosType;
StatsTable3[18].StatPtr = &HalDev->ChData[0].TxVc_Mbs;
StatsTable3[19].StatPtr = &HalDev->ChData[0].TxVc_Pcr;
#endif
#endif
StatsTable4[0].StatPtr = &HalDev->dev_base;
StatsTable4[1].StatPtr = &HalDev->offset;
StatsTable4[2].StatPtr = &HalDev->interrupt;
StatsTable4[3].StatPtr = &HalDev->debug;
StatsTable4[4].StatPtr = &HalDev->Inst;
}
#endif /* +RC 3.02 */
#ifndef _CPHAL_CPSAR /* +RC 3.02 */
#ifndef _CPHAL_AAL2 /* +RC 3.02 */
/*
* Returns statistics information.
*
* @param HalDev CPHAL module instance. (set by xxxInitModule())
*
* @return 0
*/
static int StatsGet(HAL_DEVICE *HalDev, void **StatPtr, int Index, int Ch, int Queue)
{
int Size;
bit32u *AddrPtr;
char *DataPtr;
STATS_TABLE *StatsTable;
int i, NumberOfStats;
#ifdef __CPHAL_DEBUG
if (DBG(0))
{
dbgPrintf("[cpcommon]StatsGet(HalDev:%08x, StatPtr:%08x)\n",
(bit32u)HalDev, (bit32u)StatPtr);
osfuncSioFlush();
}
#endif
StatsTable = StatsDb[Index].StatTable;
NumberOfStats = StatsDb[Index].NumberOfStats;
Size = sizeof(bit32u)*((NumberOfStats*2)+1);
Size += (NumberOfStats*11);
*StatPtr = (bit32u *)HalDev->OsFunc->Malloc(Size);
AddrPtr = (bit32u *) *StatPtr;
DataPtr = (char *)AddrPtr;
DataPtr += sizeof(bit32u)*((NumberOfStats*2)+1);
for (i=0; i<NumberOfStats; i++)
{
*AddrPtr++ = (bit32u)StatsTable[i].StatName;
*AddrPtr++ = (bit32u)DataPtr;
if (&StatsTable[i].StatPtr[Ch] != 0)
{
switch(StatsTable[i].DataType)
{
case 0:
HalDev->OsFunc->Sprintf(DataPtr, "%d", (bit32u *)StatsTable[i].StatPtr[Ch]);
break;
case 1:
HalDev->OsFunc->Sprintf(DataPtr, "0x%x", (bit32u *)StatsTable[i].StatPtr[Ch]);
break;
case 2:
HalDev->OsFunc->Sprintf(DataPtr, "%d", *((bit32u *)StatsTable[i].StatPtr + (Ch * (sizeof(CHANNEL_INFO)/4))));
break;
case 3:
HalDev->OsFunc->Sprintf(DataPtr, "%d", *((bit32u *)StatsTable[i].StatPtr + (Ch*MAX_QUEUE)+Queue));
break;
case 4:
HalDev->OsFunc->Sprintf(DataPtr, "0x%x", *((bit32u *)StatsTable[i].StatPtr + (Ch*MAX_QUEUE)+Queue));
break;
default:
/* invalid data type, due to CPHAL programming error */
break;
}
}
else
{
/* invalid statistics pointer, probably was not initialized */
}
DataPtr += HalDev->OsFunc->Strlen(DataPtr) + 1;
}
*AddrPtr = (bit32u) 0;
return (EC_NO_ERRORS);
}
#endif /* +RC 3.02 */
#endif /* +RC 3.02 */
#ifdef _CPHAL_CPMAC
static void gpioFunctional(int base, int bit)
{ /*+RC3.02*/
bit32u GpioEnr = base + 0xC;
/* To make functional, set to zero */
*(volatile bit32u *)(GpioEnr) &= ~(1 << bit); /*+RC3.02*/
} /*+RC3.02*/
/*+RC3.02*/
/* Common function, Checks to see if GPIO should be in functional mode */
static void gpioCheck(HAL_DEVICE *HalDev, void *moduleDeviceInfo)
{ /*+RC3.02*/
int rc;
void *DeviceInfo;
char *pszMuxBits;
char pszMuxBit[20];
char *pszTmp;
char szMuxBit[20];
char *ptr;
int base;
int reset_bit;
int bit;
OS_FUNCTIONS *OsFunc = HalDev->OsFunc;
rc = OsFunc->DeviceFindParmValue(moduleDeviceInfo, "gpio_mux",&pszTmp);
if(rc) return;
/* gpio entry found, get GPIO register info and make functional */
/* temp copy until FinParmValue fixed */
ptr = &szMuxBit[0];
while ((*ptr++ = *pszTmp++));
pszMuxBits = &szMuxBit[0];
rc = OsFunc->DeviceFindInfo(0,"gpio",&DeviceInfo);
if(rc) return;
rc = OsFunc->DeviceFindParmUint(DeviceInfo, "base",&base);
if(rc) return;
rc = OsFunc->DeviceFindParmUint(DeviceInfo, "reset_bit",&reset_bit);
if(rc) return;
/* If GPIO still in reset, then exit */
if((VOLATILE32(HalDev->ResetBase) & (1 << reset_bit)) == 0)
return;
/* format for gpio_mux is gpio_mux = <int>;<int>;<int>...*/
while (*pszMuxBits)
{
pszTmp = &pszMuxBit[0];
if(*pszMuxBits == ';') pszMuxBits++;
while ((*pszMuxBits != ';') && (*pszMuxBits != '\0'))
{
osfuncSioFlush();
/*If value not a number, skip */
if((*pszMuxBits < '0') || (*pszMuxBits > '9'))
pszMuxBits++;
else
*pszTmp++ = *pszMuxBits++;
}
*pszTmp = '\0';
bit = OsFunc->Strtoul(pszMuxBit, &pszTmp, 10);
gpioFunctional(base, bit);
resetWait(HalDev); /* not sure if this is needed */
}
} /*+RC3.02*/
#endif /* CPMAC */
#ifdef _CPHAL_AAL5
const char hcSarFrequency[] = "SarFreq";
#endif
#endif /* _INC */