This directory holds the models, both those downloaded automatically
from GluonCV the ones that are trained. Trained models will be put in a
subdirectory named with the args.save-prefix
argument. For example
our structure looks as follows:
VidDet/models/README.md
VidDet/models/darknet53-2189ea49.params <- downloaded by gluoncv
VidDet/models/mobilenet1.0-efbb2ca3.params <- downloaded by gluoncv
VidDet/models/0001/ <- our own trained model
GluonCV provides a few pre-trained models in their
Model Zoo. Such
models are downloaded automatically when specified in GluonCV with the
appropriate gluoncv.model_zoo.get_model()
function call, however
we present these models for download and organise them similarly to
our trained models.
Trained on PascalVOC trainval 07+12
yolo3_darknet53_voc
Trained on MSCoco train 17
yolo3_darknet53_coco
Uses MobileNet1.0 instead of DarkNet53
Trained on PascalVOC trainval 07+12
yolo3_mobilenet1.0_voc
Uses MobileNet1.0 instead of DarkNet53
Trained on MSCoco train 17
yolo3_mobilenet1.0_coco
Our models, log files, and evaluation results are available for download by clicking on each model ID below.
Trained on PascalVOC trainval 07+12
python train_yolov3.py --dataset voc --gpus 0,1,2,3 --save_prefix 0001 --num_workers 16 --warmup_lr 0.0001 --warmup_epochs 3 --syncbn True
Trained on ImageNetDET train_nonempty
python train_yolov3.py --dataset det --gpus 0,1,2,3 --save_prefix 0002 --num_workers 16 --warmup_lr 0.0001 --warmup_epochs 3 --syncbn True
Trained on MSCoco train 17
python train_yolov3.py --dataset coco --gpus 0,1,2,3 --save_prefix 0003 --num_workers 16 --warmup_lr 0.0001 --warmup_epochs 3 --syncbn True
Trained on ImageNetVID train17_ne_0.04
python train_yolov3.py --dataset vid --gpus 0,1,2,3 --save_prefix 0004 --num_workers 16 --warmup_lr 0.0001 --warmup_epochs 3 --syncbn True --frames 0.04
Uses MobileNet1.0 instead of DarkNet53
Trained on PascalVOC trainval 07+12
python train_yolov3.py --network mobilenet1.0 --dataset voc --gpus 0,1,2,3 --save_prefix 0001 --num_workers 16 --warmup_lr 0.0001 --warmup_epochs 3 --syncbn True
Uses MobileNet1.0 instead of DarkNet53
Trained on ImageNetDET train_nonempty
python train_yolov3.py --network mobilenet1.0 --dataset det --gpus 0,1,2,3 --save_prefix 0002 --num_workers 16 --warmup_lr 0.0001 --warmup_epochs 3 --syncbn True
Uses MobileNet1.0 instead of DarkNet53
Trained on MSCoco train 17
python train_yolov3.py --network mobilenet1.0 --dataset coco --gpus 0,1,2,3 --save_prefix 0003 --num_workers 16 --warmup_lr 0.0001 --warmup_epochs 3 --syncbn True
Uses MobileNet1.0 instead of DarkNet53
Trained on ImageNetVID train17_ne_0.04
python train_yolov3.py --network mobilenet1_0 --dataset vid --gpus 0,1,2,3 --save_prefix 0004 --num_workers 16 --warmup_lr 0.0001 --warmup_epochs 3 --syncbn True --frames 0.04
Evaluated with voc
and coco
metrics. Box Area's - Small <32
,
Medium 32-96
, Large >96
Model | Trained On | Tested On | VOC12 | AP.5-.95 | AP.5 | AP.75 | APS | APM | APL |
---|---|---|---|---|---|---|---|---|---|
0001 |
VOC trainval 07+12 |
VOC test 07 |
.835 | .463 | .733 | .510 | .118 | .317 | .559 |
GCV1 |
VOC trainval 07+12 |
VOC test 07 |
.836 | .462 | .735 | .500 | .113 | .304 | .564 |
0006 |
VOC trainval 07+12 |
VOC test 07 |
.751 | .356 | .656 | .346 | .095 | .205 | .438 |
GCV3 |
VOC trainval 07+12 |
VOC test 07 |
.779 | .396 | .677 | .418 | .104 | .245 | .486 |
0003 |
COCO train 17 |
COCO val 17 |
.525 | .288 | .515 | .296 | .136 | .306 | .427 |
GCV2 |
COCO train 17 |
COCO val 17 |
.579 | .360 | .571 | .387 | .173 | .387 | .522 |
GCV4 |
COCO train 17 |
COCO val 17 |
.500 | .286 | .488 | .299 | .132 | .298 | .423 |
0004 |
VID train17_ne_0.04 |
VID val_ne_0.04 |
.478 | .274 | .453 | .298 | .031 | .130 | .330 |
Evaluated with vid
metric. Box Area's - Small <50
,
Medium 50-150
, Large >150
. Instance's Speed (motion IoU) -
SLow >0.9
, MOderate 0.7-0.9
, FAst <0.7
Model | Trained On | Tested On | mAP | APS | APM | APL | APSL | APMO | APFA |
---|---|---|---|---|---|---|---|---|---|
0004 |
VID train17_ne_0.04 |
VID val_ne_0.04 |
.454 | .136 | .328 | .555 | .522 | .442 | .292 |