-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtitanic.py
286 lines (201 loc) · 9.4 KB
/
titanic.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
# -*- coding:utf-8 -*-
import pandas as pd
import numpy as np
import random as rnd
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.linear_model import LogisticRegression
from sklearn.svm import SVC, LinearSVC
from sklearn.ensemble import RandomForestClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.naive_bayes import GaussianNB
from sklearn.linear_model import Perceptron
from sklearn.linear_model import SGDClassifier
from sklearn.tree import DecisionTreeClassifier
from xgboost import XGBClassifier
def analize_data():
# ['PassengerId' 'Survived' 'Pclass' 'Name' 'Sex' 'Age' 'SibSp' 'Parch' 'Ticket' 'Fare' 'Cabin' 'Embarked']
train_df = pd.read_csv('./train.csv')
test_df = pd.read_csv('./test.csv')
#print train_df.columns.values
#print train_df.info()
# 则会判断哪些”列”存在缺失值
#print train_df.isnull().any()
#print train_df.describe()
#print train_df.describe(include=['O'])
#print 'Pclass'
df_temp1 = train_df[['Pclass', 'Survived']].groupby(by='Pclass', as_index=False).mean().sort_values(
by='Survived', ascending=False)
#print df_temp1
#print 'Sex:'
df_temp2 = train_df[['Sex', 'Survived']].groupby(by='Sex', as_index=False).mean().sort_values(
by='Survived', ascending=False)
#print df_temp2
#print 'SibSp:'
df_temp3 = train_df[['SibSp', 'Survived']].groupby(by='SibSp', as_index=False).mean().sort_values(
by='Survived', ascending=False)
#print df_temp3
#print 'Parch:'
df_temp4 = train_df[['Parch', 'Survived']].groupby(by='Parch', as_index=False).mean().sort_values(
by='Survived', ascending=False)
#print df_temp4
def analize_by_pic():
train_df = pd.read_csv('./train.csv')
g = sns.FacetGrid(train_df, col='Survived')
g.map(plt.hist, 'Age', bins=20)
plt.show()
g2 = sns.FacetGrid(train_df, col='Survived', row='Pclass', size=2.2, aspect=1.6)
g2.map(plt.hist, 'Age', bins=20)
#g2.add_legend()
plt.show()
g3 = sns.FacetGrid(train_df, row='Embarked', size=2.2, aspect=1.6)
g3.map(sns.pointplot, 'Pclass', 'Survived', 'Sex', palette='deep')
g3.add_legend()
plt.show()
g4 = sns.FacetGrid(train_df, row='Embarked', col='Survived', size=2.2, aspect=1.6)
g4.map(sns.barplot, 'Sex', 'Fare', alpha=.5, ci=None)
g4.add_legend()
plt.show()
def feature_manipulate():
train_df = pd.read_csv('./train.csv')
test_df = pd.read_csv('./test.csv')
train_df = train_df.drop(['Ticket', 'Cabin'], axis=1)
test_df = test_df.drop(['Ticket', 'Cabin'], axis=1)
combine = [train_df, test_df]
for dataset in combine:
dataset['Title'] = dataset.Name.str.extract(' ([A-Za-z]+)\.', expand=False)
# print pd.crosstab(train_df['Title'], train_df['Sex'])
for dataset in combine:
dataset['Title'] = dataset['Title'].replace(['Lady', 'Countess', 'Capt', 'Col', 'Don', 'Dr', 'Major', 'Rev',
'Sir', 'Jonkheer', 'Dona'], 'Rare')
dataset['Title'] = dataset['Title'].replace(['Mlle', 'Ms'], 'Miss')
dataset['Title'] = dataset['Title'].replace('Mme', 'Mrs')
# print combine[0][['Title', 'Survived']].groupby(['Title'], as_index=False).mean()
title_mapping = {'Mr': 1, 'Miss': 2, 'Mrs': 3, 'Master': 4, 'Rare': 5}
for dataset in combine:
dataset['Title'] = dataset['Title'].map(title_mapping).astype(int)
dataset['Title'].fillna(0)
# print combine[0][['Title', 'Survived']].groupby(['Title'], as_index=False).mean()
train_df = combine[0].drop(['Name', 'PassengerId'], axis=1)
test_df = combine[1].drop(['Name'], axis=1)
combine = [train_df, test_df]
# print train_df.shape, test_df.shape
sex_mapping = {'female': 1, 'male': 0}
for dataset in combine:
dataset['Sex'] = dataset['Sex'].map(sex_mapping).astype(int)
# complete the age's nan with median
age_df = np.zeros((2, 3))
for dataset in combine:
for i in range(0, 2):
for j in range(0, 3):
guess_df = dataset[(dataset['Sex'] == i) & (dataset['Pclass'] == j+1)]['Age'].dropna()
age_guess = guess_df.median()
age_df[i, j] = int(age_guess/0.5 + 0.5)*0.5
for i in range(0, 2):
for j in range(0, 3):
dataset.loc[(dataset.Age.isnull()) & (dataset['Sex'] == i) &
(dataset['Pclass'] == j+1), 'Age'] = age_df[i, j]
dataset['Age'] = dataset['Age'].astype(int)
#combine[0]['AgeBand'] = pd.cut(combine[0]['Age'], 5)
#print combine[0][['AgeBand', 'Survived']].groupby(['AgeBand'], as_index=False).mean().sort_values(by='AgeBand', ascending=True)
for dataset in combine:
dataset.loc[dataset['Age'] <= 16, 'Age'] = 0
dataset.loc[(dataset['Age'] > 16) & (dataset['Age'] <= 32), 'Age'] = 1
dataset.loc[(dataset['Age'] > 32) & (dataset['Age'] <= 48), 'Age'] = 2
dataset.loc[(dataset['Age'] > 48) & (dataset['Age'] <= 64), 'Age'] = 3
dataset.loc[dataset['Age'] > 64, 'Age'] = 4
for dataset in combine:
dataset['Age*Class'] = dataset['Age']*dataset['Pclass']
for dataset in combine:
dataset['FamilySize'] = dataset['SibSp'] + dataset['Parch'] + 1
#print combine[0][['FamilySize', 'Survived']].groupby('FamilySize', as_index=False).mean().sort_values('Survived', ascending=False)
for dataset in combine:
dataset['isAlone'] = 0
dataset.loc[dataset['FamilySize'] == 1, 'isAlone'] = 1
# print combine[0][['isAlone', 'Survived']].groupby('isAlone', as_index=False).mean().sort_values('Survived', ascending=False)
train_df = combine[0].drop(['SibSp', 'Parch', 'FamilySize'], axis=1)
test_df = combine[1].drop(['SibSp', 'Parch', 'FamilySize'], axis=1)
freq_port = train_df.Embarked.dropna().mode()[0]
train_df['Embarked'] = train_df['Embarked'].fillna(freq_port)
combine = [train_df, test_df]
embarked_mapping = {'C': 0, 'S': 1, 'Q': 2}
for dataset in combine:
dataset['Embarked'] = dataset['Embarked'].map(embarked_mapping).astype(int)
# combine[0]['FareBand'] = pd.qcut(combine[0]['Fare'], 4)
# print combine[0][['FareBand', 'Survived']].groupby('FareBand', as_index=False).mean().sort_values('FareBand', ascending=True)
combine[1]['Fare'].fillna(combine[1]['Fare'].dropna().median(), inplace=True)
for dataset in combine:
dataset.loc[dataset['Fare'] <= 7.91, 'Fare'] = 0
dataset.loc[(dataset['Fare'] > 7.91) & (dataset['Fare'] <= 14.454), 'Fare'] = 1
dataset.loc[(dataset['Fare'] > 14.454) & (dataset['Fare'] <= 31.0), 'Fare'] = 2
dataset.loc[dataset['Fare'] > 31.0, 'Fare'] = 3
dataset['Fare'] = dataset['Fare'].astype(int)
return combine[0], combine[1]
def model():
train_df, test_df = feature_manipulate()
#print train_df.head(10)
#print test_df.head(10)
x_train = train_df.drop('Survived', axis=1)
y_train = train_df['Survived']
x_test = test_df.drop('PassengerId', axis=1).copy()
#print x_train.shape, y_train.shape, x_test.shape
'''
逻辑回归
logreg = LogisticRegression()
logreg.fit(x_train, y_train)
y_pred = logreg.predict(x_test)
acc_log = round(logreg.score(x_train, y_train)*100, 2)
print acc_log
coeff_df = pd.DataFrame(train_df.columns.delete(0))
print coeff_df
coeff_df.columns = ['Features']
print logreg.coef_
coeff_df['Correlation'] = pd.Series(logreg.coef_[0])
print coeff_df.sort_values('Correlation', ascending=False)
svc = SVC()
svc.fit(x_train, y_train)
y_pred = svc.predict(x_test)
print 'svc', round(svc.score(x_train, y_train)*100, 2)
knn = KNeighborsClassifier(n_neighbors=3)
knn.fit(x_train, y_train)
y_pred = knn.predict(x_test)
print 'knn:', round(knn.score(x_train, y_train)*100, 2)
gaussian = GaussianNB()
gaussian.fit(x_train, y_train)
y_pred = gaussian.predict(x_test)
print 'baye gaussian:', round(gaussian.score(x_train, y_train)*100, 2)
perceptron = Perceptron()
perceptron.fit(x_train, y_train)
y_pred = perceptron.predict(x_test)
print 'perceptron:', round(perceptron.score(x_train, y_train)*100, 2)
linear_svc = LinearSVC()
linear_svc.fit(x_train, y_train)
y_pred = linear_svc.predict(x_test)
print 'linear_svc: ', round(linear_svc.score(x_train, y_train)*100, 2)
sgd = SGDClassifier()
sgd.fit(x_train, y_train)
y_pred = sgd.predict(x_test)
print 'sgd: ', round(sgd.score(x_train, y_train)*100, 2)
random_tree = RandomForestClassifier()
random_tree.fit(x_train, y_train)
y_pred = random_tree.predict(x_test)
print 'random_tree: ', round(random_tree.score(x_train, y_train) * 100, 2)
'''
decision_tree = DecisionTreeClassifier()
decision_tree.fit(x_train, y_train)
y_pred = decision_tree.predict(x_test)
#print 'decision_tree: ', round(decision_tree.score(x_train, y_train)*100, 2)
submission = pd.DataFrame({'PassengerId': test_df['PassengerId'], 'Survived': y_pred})
#print submission
submission.to_csv('./submission.csv', index=False)
xgb = XGBClassifier()
xgb.fit(x_train, y_train)
y_pred = xgb.predict(x_test)
print('xgb:', round(xgb.score(x_train, y_train)*100, 2))
def test():
train_df = pd.read_csv('train.csv')
test_df = pd.read_csv('test.csv')
#print train_df['Survived']
#print train_df.describe()
if __name__ == '__main__':
model()