|
| 1 | +import sys |
| 2 | + |
| 3 | +sys.path.append("..") |
| 4 | + |
| 5 | +import numpy as np |
| 6 | + |
| 7 | +import matplotlib.pyplot as plt |
| 8 | +import seaborn as sns |
| 9 | + |
| 10 | +# https://seaborn.pydata.org/generated/seaborn.set_context.html |
| 11 | +# https://seaborn.pydata.org/generated/seaborn.set_style.html |
| 12 | +sns.set_style("white") |
| 13 | +sns.set_context("paper", font_scale=0.5) |
| 14 | + |
| 15 | +from linear_models.lm import LinearRegression |
| 16 | +from kernel_regression import KernelRegression |
| 17 | +from knn import KNN |
| 18 | + |
| 19 | +from sklearn.model_selection import train_test_split |
| 20 | +from sklearn.datasets import make_regression |
| 21 | + |
| 22 | + |
| 23 | +def random_regression_problem(n_ex, n_in, n_out, d=3, intercept=0, std=1, seed=0): |
| 24 | + coef = np.random.uniform(0, 50, size=d) |
| 25 | + coef[-1] = intercept |
| 26 | + |
| 27 | + y = [] |
| 28 | + X = np.random.uniform(-100, 100, size=(n_ex, n_in)) |
| 29 | + for x in X: |
| 30 | + val = np.polyval(coef, x) + np.random.normal(0, std) |
| 31 | + y.append(val) |
| 32 | + y = np.array(y) |
| 33 | + |
| 34 | + # X, y, coef = make_regression( |
| 35 | + # n_samples=n_ex, |
| 36 | + # n_features=n_in, |
| 37 | + # n_targets=n_out, |
| 38 | + # bias=intercept, |
| 39 | + # noise=std, |
| 40 | + # coef=True, |
| 41 | + # random_state=seed, |
| 42 | + # ) |
| 43 | + X_train, X_test, y_train, y_test = train_test_split( |
| 44 | + X, y, test_size=0.3, random_state=seed |
| 45 | + ) |
| 46 | + return X_train, y_train, X_test, y_test, coef |
| 47 | + |
| 48 | + |
| 49 | +def plot_regression(): |
| 50 | + np.random.seed(12345) |
| 51 | + fig, axes = plt.subplots(4, 4) |
| 52 | + for i, ax in enumerate(axes.flatten()): |
| 53 | + n_in = 1 |
| 54 | + n_out = 1 |
| 55 | + d = np.random.randint(1, 5) |
| 56 | + n_ex = np.random.randint(5, 500) |
| 57 | + std = np.random.randint(0, 1000) |
| 58 | + intercept = np.random.rand() * np.random.randint(-300, 300) |
| 59 | + X_train, y_train, X_test, y_test, coefs = random_regression_problem( |
| 60 | + n_ex, n_in, n_out, d=d, intercept=intercept, std=std, seed=i |
| 61 | + ) |
| 62 | + |
| 63 | + LR = LinearRegression(fit_intercept=True) |
| 64 | + LR.fit(X_train, y_train) |
| 65 | + y_pred = LR.predict(X_test) |
| 66 | + loss = np.mean((y_test.flatten() - y_pred.flatten()) ** 2) |
| 67 | + |
| 68 | + d = 3 |
| 69 | + best_loss = np.inf |
| 70 | + for gamma in np.linspace(1e-10, 1, 100): |
| 71 | + for c0 in np.linspace(-1, 1000, 100): |
| 72 | + kernel = "PolynomialKernel(d={}, gamma={}, c0={})".format(d, gamma, c0) |
| 73 | + KR_poly = KernelRegression(kernel=kernel) |
| 74 | + KR_poly.fit(X_train, y_train) |
| 75 | + y_pred_poly = KR_poly.predict(X_test) |
| 76 | + loss_poly = np.mean((y_test.flatten() - y_pred_poly.flatten()) ** 2) |
| 77 | + if loss_poly <= best_loss: |
| 78 | + KR_poly_best = kernel |
| 79 | + best_loss = loss_poly |
| 80 | + |
| 81 | + print("Best kernel: {} || loss: {:.4f}".format(KR_poly_best, best_loss)) |
| 82 | + KR_poly = KernelRegression(kernel=KR_poly_best) |
| 83 | + KR_poly.fit(X_train, y_train) |
| 84 | + |
| 85 | + KR_rbf = KernelRegression(kernel="RBFKernel(gamma=0.01)") |
| 86 | + KR_rbf.fit(X_train, y_train) |
| 87 | + y_pred_rbf = KR_rbf.predict(X_test) |
| 88 | + loss_rbf = np.mean((y_test.flatten() - y_pred_rbf.flatten()) ** 2) |
| 89 | + |
| 90 | + xmin = min(X_test) - 0.1 * (max(X_test) - min(X_test)) |
| 91 | + xmax = max(X_test) + 0.1 * (max(X_test) - min(X_test)) |
| 92 | + X_plot = np.linspace(xmin, xmax, 100) |
| 93 | + y_plot = LR.predict(X_plot) |
| 94 | + y_plot_poly = KR_poly.predict(X_plot) |
| 95 | + y_plot_rbf = KR_rbf.predict(X_plot) |
| 96 | + |
| 97 | + ax.scatter(X_test, y_test, alpha=0.5) |
| 98 | + ax.plot(X_plot, y_plot, label="OLS", alpha=0.5) |
| 99 | + ax.plot( |
| 100 | + X_plot, y_plot_poly, label="KR (poly kernel, d={})".format(d), alpha=0.5 |
| 101 | + ) |
| 102 | + ax.plot(X_plot, y_plot_rbf, label="KR (rbf kernel)", alpha=0.5) |
| 103 | + ax.legend() |
| 104 | + # ax.set_title( |
| 105 | + # "MSE\nLR: {:.2f} KR (poly): {:.2f}\nKR (rbf): {:.2f}".format( |
| 106 | + # loss, loss_poly, loss_rbf |
| 107 | + # ) |
| 108 | + # ) |
| 109 | + |
| 110 | + ax.xaxis.set_ticklabels([]) |
| 111 | + ax.yaxis.set_ticklabels([]) |
| 112 | + |
| 113 | + plt.tight_layout() |
| 114 | + plt.savefig("img/kr_plots.png", dpi=300) |
| 115 | + plt.close("all") |
| 116 | + |
| 117 | + |
| 118 | +def plot_knn(): |
| 119 | + np.random.seed(12345) |
| 120 | + fig, axes = plt.subplots(4, 4) |
| 121 | + for i, ax in enumerate(axes.flatten()): |
| 122 | + n_in = 1 |
| 123 | + n_out = 1 |
| 124 | + d = np.random.randint(1, 5) |
| 125 | + n_ex = np.random.randint(5, 500) |
| 126 | + std = np.random.randint(0, 1000) |
| 127 | + intercept = np.random.rand() * np.random.randint(-300, 300) |
| 128 | + X_train, y_train, X_test, y_test, coefs = random_regression_problem( |
| 129 | + n_ex, n_in, n_out, d=d, intercept=intercept, std=std, seed=i |
| 130 | + ) |
| 131 | + |
| 132 | + LR = LinearRegression(fit_intercept=True) |
| 133 | + LR.fit(X_train, y_train) |
| 134 | + y_pred = LR.predict(X_test) |
| 135 | + loss = np.mean((y_test.flatten() - y_pred.flatten()) ** 2) |
| 136 | + |
| 137 | + knn_1 = KNN(k=1, classifier=False, leaf_size=10, weights="uniform") |
| 138 | + knn_1.fit(X_train, y_train) |
| 139 | + y_pred_1 = knn_1.predict(X_test) |
| 140 | + loss_1 = np.mean((y_test.flatten() - y_pred_1.flatten()) ** 2) |
| 141 | + |
| 142 | + knn_5 = KNN(k=5, classifier=False, leaf_size=10, weights="uniform") |
| 143 | + knn_5.fit(X_train, y_train) |
| 144 | + y_pred_5 = knn_5.predict(X_test) |
| 145 | + loss_5 = np.mean((y_test.flatten() - y_pred_5.flatten()) ** 2) |
| 146 | + |
| 147 | + knn_10 = KNN(k=10, classifier=False, leaf_size=10, weights="uniform") |
| 148 | + knn_10.fit(X_train, y_train) |
| 149 | + y_pred_10 = knn_10.predict(X_test) |
| 150 | + loss_10 = np.mean((y_test.flatten() - y_pred_10.flatten()) ** 2) |
| 151 | + |
| 152 | + xmin = min(X_test) - 0.1 * (max(X_test) - min(X_test)) |
| 153 | + xmax = max(X_test) + 0.1 * (max(X_test) - min(X_test)) |
| 154 | + X_plot = np.linspace(xmin, xmax, 100) |
| 155 | + y_plot = LR.predict(X_plot) |
| 156 | + y_plot_1 = knn_1.predict(X_plot) |
| 157 | + y_plot_5 = knn_5.predict(X_plot) |
| 158 | + y_plot_10 = knn_10.predict(X_plot) |
| 159 | + |
| 160 | + ax.scatter(X_test, y_test, alpha=0.5) |
| 161 | + ax.plot(X_plot, y_plot, label="OLS", alpha=0.5) |
| 162 | + ax.plot(X_plot, y_plot_1, label="KNN (k=1)", alpha=0.5) |
| 163 | + ax.plot(X_plot, y_plot_5, label="KNN (k=5)", alpha=0.5) |
| 164 | + ax.plot(X_plot, y_plot_10, label="KNN (k=10)", alpha=0.5) |
| 165 | + ax.legend() |
| 166 | + # ax.set_title( |
| 167 | + # "MSE\nLR: {:.2f} KR (poly): {:.2f}\nKR (rbf): {:.2f}".format( |
| 168 | + # loss, loss_poly, loss_rbf |
| 169 | + # ) |
| 170 | + # ) |
| 171 | + |
| 172 | + ax.xaxis.set_ticklabels([]) |
| 173 | + ax.yaxis.set_ticklabels([]) |
| 174 | + |
| 175 | + plt.tight_layout() |
| 176 | + plt.savefig("img/knn_plots.png", dpi=300) |
| 177 | + plt.close("all") |
0 commit comments