Skip to content

Latest commit

 

History

History
164 lines (124 loc) · 4.78 KB

data_pipeline.md

File metadata and controls

164 lines (124 loc) · 4.78 KB

Tutorial 3: Custom Data Pipelines

Design of Data pipelines

Following typical conventions, we use Dataset and DataLoader for data loading with multiple workers. Dataset returns a dict of data items corresponding the arguments of models' forward method. Since the data in object detection may not be the same size (image size, gt bbox size, etc.), we introduce a new DataContainer type in MMCV to help collect and distribute data of different size. See here for more details.

The data preparation pipeline and the dataset is decomposed. Usually a dataset defines how to process the annotations and a data pipeline defines all the steps to prepare a data dict. A pipeline consists of a sequence of operations. Each operation takes a dict as input and also output a dict for the next transform.

We present a classical pipeline in the following figure. The blue blocks are pipeline operations. With the pipeline going on, each operator can add new keys (marked as green) to the result dict or update the existing keys (marked as orange). pipeline figure

The operations are categorized into data loading, pre-processing, formatting and test-time augmentation.

Here is an pipeline example for Faster R-CNN.

img_norm_cfg = dict(
    mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
train_pipeline = [
    dict(type='LoadImageFromFile'),
    dict(type='LoadAnnotations', with_bbox=True),
    dict(type='Resize', img_scale=(1333, 800), keep_ratio=True),
    dict(type='RandomFlip', flip_ratio=0.5),
    dict(type='Normalize', **img_norm_cfg),
    dict(type='Pad', size_divisor=32),
    dict(type='DefaultFormatBundle'),
    dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']),
]
test_pipeline = [
    dict(type='LoadImageFromFile'),
    dict(
        type='MultiScaleFlipAug',
        img_scale=(1333, 800),
        flip=False,
        transforms=[
            dict(type='Resize', keep_ratio=True),
            dict(type='RandomFlip'),
            dict(type='Normalize', **img_norm_cfg),
            dict(type='Pad', size_divisor=32),
            dict(type='ImageToTensor', keys=['img']),
            dict(type='Collect', keys=['img']),
        ])
]

For each operation, we list the related dict fields that are added/updated/removed.

Data loading

LoadImageFromFile

  • add: img, img_shape, ori_shape

LoadAnnotations

  • add: gt_bboxes, gt_bboxes_ignore, gt_labels, gt_masks, gt_semantic_seg, bbox_fields, mask_fields

LoadProposals

  • add: proposals

Pre-processing

Resize

  • add: scale, scale_idx, pad_shape, scale_factor, keep_ratio
  • update: img, img_shape, *bbox_fields, *mask_fields, *seg_fields

RandomFlip

  • add: flip
  • update: img, *bbox_fields, *mask_fields, *seg_fields

Pad

  • add: pad_fixed_size, pad_size_divisor
  • update: img, pad_shape, *mask_fields, *seg_fields

RandomCrop

  • update: img, pad_shape, gt_bboxes, gt_labels, gt_masks, *bbox_fields

Normalize

  • add: img_norm_cfg
  • update: img

SegRescale

  • update: gt_semantic_seg

PhotoMetricDistortion

  • update: img

Expand

  • update: img, gt_bboxes

MinIoURandomCrop

  • update: img, gt_bboxes, gt_labels

Corrupt

  • update: img

Formatting

ToTensor

  • update: specified by keys.

ImageToTensor

  • update: specified by keys.

Transpose

  • update: specified by keys.

ToDataContainer

  • update: specified by fields.

DefaultFormatBundle

  • update: img, proposals, gt_bboxes, gt_bboxes_ignore, gt_labels, gt_masks, gt_semantic_seg

Collect

  • add: img_meta (the keys of img_meta is specified by meta_keys)
  • remove: all other keys except for those specified by keys

Test time augmentation

MultiScaleFlipAug

Extend and use custom pipelines

  1. Write a new pipeline in any file, e.g., my_pipeline.py. It takes a dict as input and return a dict.

    from mmdet.datasets import PIPELINES
    
    @PIPELINES.register_module()
    class MyTransform:
    
        def __call__(self, results):
            results['dummy'] = True
            return results
  2. Import the new class.

    from .my_pipeline import MyTransform
  3. Use it in config files.

    img_norm_cfg = dict(
        mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
    train_pipeline = [
        dict(type='LoadImageFromFile'),
        dict(type='LoadAnnotations', with_bbox=True),
        dict(type='Resize', img_scale=(1333, 800), keep_ratio=True),
        dict(type='RandomFlip', flip_ratio=0.5),
        dict(type='Normalize', **img_norm_cfg),
        dict(type='Pad', size_divisor=32),
        dict(type='MyTransform'),
        dict(type='DefaultFormatBundle'),
        dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']),
    ]