-
Notifications
You must be signed in to change notification settings - Fork 74
/
Copy pathpipe_FRESCO.py
234 lines (200 loc) · 9.94 KB
/
pipe_FRESCO.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
from src.utils import *
from src.flow_utils import warp_tensor
import torch
import torchvision
import gc
"""
==========================================================================
* step(): one DDPM step with background smoothing
* inference(): translate one batch with FRESCO and background smoothing
==========================================================================
"""
def step(pipe, model_output, timestep, sample, generator, repeat_noise=False,
visualize_pipeline=False, flows=None, occs=None, saliency=None):
"""
DDPM step with background smoothing
* background smoothing: warp the background region of the previous frame to the current frame
"""
scheduler = pipe.scheduler
# 1. get previous step value (=t-1)
prev_timestep = scheduler.previous_timestep(timestep)
# 2. compute alphas, betas
alpha_prod_t = scheduler.alphas_cumprod[timestep]
alpha_prod_t_prev = scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else scheduler.one
beta_prod_t = 1 - alpha_prod_t
beta_prod_t_prev = 1 - alpha_prod_t_prev
current_alpha_t = alpha_prod_t / alpha_prod_t_prev
current_beta_t = 1 - current_alpha_t
# 3. compute predicted original sample from predicted noise also called
# "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
pred_original_sample = (sample - beta_prod_t ** (0.5) * model_output) / alpha_prod_t ** (0.5)
"""
[HACK] add background smoothing
decode the feature
warp the feature of f_{i-1}
fuse the warped f_{i-1} with f_{i} in the non-salient region (i.e., background)
encode the fused feature
"""
if saliency is not None and flows is not None and occs is not None:
image = pipe.vae.decode(pred_original_sample / pipe.vae.config.scaling_factor).sample
image = warp_tensor(image, flows, occs, saliency, unet_chunk_size=1)
pred_original_sample = pipe.vae.config.scaling_factor * pipe.vae.encode(image).latent_dist.sample()
# 4. Compute coefficients for pred_original_sample x_0 and current sample x_t
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
pred_original_sample_coeff = (alpha_prod_t_prev ** (0.5) * current_beta_t) / beta_prod_t
current_sample_coeff = current_alpha_t ** (0.5) * beta_prod_t_prev / beta_prod_t
# 5. Compute predicted previous sample µ_t
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
pred_prev_sample = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample
variance = beta_prod_t_prev / beta_prod_t * current_beta_t
variance = torch.clamp(variance, min=1e-20)
variance = (variance ** 0.5) * torch.randn(model_output.shape, generator=generator,
device=model_output.device, dtype=model_output.dtype)
"""
[HACK] background smoothing
applying the same noise could be good for static background
"""
if repeat_noise:
variance = variance[0:1].repeat(model_output.shape[0],1,1,1)
if visualize_pipeline: # for debug
image = pipe.vae.decode(pred_original_sample / pipe.vae.config.scaling_factor).sample
viz = torchvision.utils.make_grid(torch.clamp(image, -1, 1), image.shape[0], 1)
visualize(viz.cpu(), 90)
pred_prev_sample = pred_prev_sample + variance
return (pred_prev_sample, pred_original_sample)
@torch.no_grad()
def inference(pipe, controlnet, frescoProc,
imgs, prompt_embeds, edges, timesteps,
cond_scale=[0.7]*20, num_inference_steps=20, num_warmup_steps=6,
do_classifier_free_guidance=True, seed=0, guidance_scale=7.5, use_controlnet=True,
record_latents=[], propagation_mode=False, visualize_pipeline=False,
flows = None, occs = None, saliency=None, repeat_noise=False,
num_intraattn_steps = 1, step_interattn_end = 350, bg_smoothing_steps = [16,17]):
"""
video-to-video translation inference pipeline with FRESCO
* add controlnet and SDEdit
* add FRESCO-guided attention
* add FRESCO-guided optimization
* add background smoothing
* add support for inter-batch long video translation
[input of the original pipe]
pipe: base diffusion model
imgs: a batch of the input frames
prompt_embeds: prompts
num_inference_steps: number of DDPM steps
timesteps: generated by pipe.scheduler.set_timesteps(num_inference_steps)
do_classifier_free_guidance: cfg, should be always true
guidance_scale: cfg scale
seed
[input of SDEdit]
num_warmup_steps: skip the first num_warmup_steps DDPM steps
[input of controlnet]
use_controlnet: bool, whether using controlnet
controlnet: controlnet model
edges: input for controlnet (edge/stroke/depth, etc.)
cond_scale: controlnet scale
[input of FRESCO]
frescoProc: FRESCO attention controller
flows: optical flows
occs: occlusion mask
num_intraattn_steps: apply num_interattn_steps steps of spatial-guided attention
step_interattn_end: apply temporal-guided attention in [step_interattn_end, 1000] steps
[input for background smoothing]
saliency: saliency mask
repeat_noise: bool, use the same noise for all frames
bg_smoothing_steps: apply background smoothing in bg_smoothing_steps
[input for long video translation]
record_latents: recorded latents in the last batch
propagation_mode: bool, whether this is not the first batch
[output]
latents: a batch of latents of the translated frames
"""
gc.collect()
torch.cuda.empty_cache()
device = pipe._execution_device
noise_scheduler = pipe.scheduler
generator = torch.Generator(device=device).manual_seed(seed)
B, C, H, W = imgs.shape
latents = pipe.prepare_latents(
B,
pipe.unet.config.in_channels,
H,
W,
prompt_embeds.dtype,
device,
generator,
latents = None,
)
if repeat_noise:
latents = latents[0:1].repeat(B,1,1,1).detach()
if num_warmup_steps < 0:
latents_init = latents.detach()
num_warmup_steps = 0
else:
# SDEdit, use the noisy latent of imges as the input rather than a pure gausssian noise
latent_x0 = pipe.vae.config.scaling_factor * pipe.vae.encode(imgs.to(pipe.unet.dtype)).latent_dist.sample()
latents_init = noise_scheduler.add_noise(latent_x0, latents, timesteps[num_warmup_steps]).detach()
# SDEdit, run num_inference_steps-num_warmup_steps steps
with pipe.progress_bar(total=num_inference_steps-num_warmup_steps) as progress_bar:
latents = latents_init
for i, t in enumerate(timesteps[num_warmup_steps:]):
"""
[HACK] control the steps to apply spatial/temporal-guided attention
[HACK] record and restore latents from previous batch
"""
if i >= num_intraattn_steps:
frescoProc.controller.disable_intraattn()
if t < step_interattn_end:
frescoProc.controller.disable_interattn()
if propagation_mode: # restore latent from previous batch and record latent of the current batch
latents[0:2] = record_latents[i].detach().clone()
record_latents[i] = latents[[0,len(latents)-1]].detach().clone()
else: # frist batch, record_latents[0][t] = [x_1,t, x_{N,t}]
record_latents += [latents[[0,len(latents)-1]].detach().clone()]
# expand the latents if we are doing classifier free guidance
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
if use_controlnet:
control_model_input = latent_model_input
controlnet_prompt_embeds = prompt_embeds
down_block_res_samples, mid_block_res_sample = controlnet(
control_model_input,
t,
encoder_hidden_states=controlnet_prompt_embeds,
controlnet_cond=edges,
conditioning_scale=cond_scale[i+num_warmup_steps],
guess_mode=False,
return_dict=False,
)
else:
down_block_res_samples, mid_block_res_sample = None, None
# predict the noise residual
noise_pred = pipe.unet(
latent_model_input,
t,
encoder_hidden_states=prompt_embeds,
cross_attention_kwargs=None,
down_block_additional_residuals=down_block_res_samples,
mid_block_additional_residual=mid_block_res_sample,
return_dict=False,
)[0]
# perform guidance
if do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
# compute the previous noisy sample x_t -> x_t-1
"""
[HACK] background smoothing
Note: bg_smoothing_steps should be rescaled based on num_inference_steps
current [16,17] is based on num_inference_steps=20
"""
if i + num_warmup_steps in bg_smoothing_steps:
latents = step(pipe, noise_pred, t, latents, generator,
visualize_pipeline=visualize_pipeline,
flows = flows, occs = occs, saliency=saliency)[0]
else:
latents = step(pipe, noise_pred, t, latents, generator,
visualize_pipeline=visualize_pipeline)[0]
# call the callback, if provided
if i == len(timesteps) - 1 or ((i + 1) > 0 and (i + 1) % pipe.scheduler.order == 0):
progress_bar.update()
return latents