Skip to content

williamFalcon/tensorflow-gpu-install-ubuntu-16.04

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

49 Commits
 
 

Repository files navigation

Tensorflow GPU install on ubuntu 16.04

These instructions are intended to set up a deep learning environment for GPU-powered tensorflow.
See here for pytorch GPU install instructions

After following these instructions you'll have:

  1. Ubuntu 16.04.
  2. Cuda 9.0 drivers installed.
  3. A conda environment with python 3.6.
  4. The latest tensorflow version with gpu support.

Step 0: Noveau drivers

Before you begin, you may need to disable the opensource ubuntu NVIDIA driver called nouveau.

Option 1: Modify modprobe file

  1. After you boot the linux system and are sitting at a login prompt, press ctrl+alt+F1 to get to a terminal screen. Login via this terminal screen.

  2. Create a file: /etc/modprobe.d/nouveau-blacklist.conf e.g. by

sudo touch /etc/modprobe.d/nouveau-blacklist.conf
  1. Put the following in the above file...
blacklist nouveau
options nouveau modeset=0
  1. Regenerate the kernel initramfs
sudo update-initramfs -u
  1. reboot system
reboot
  1. On reboot, verify that noveau drivers are not loaded
lsmod | grep nouveau

If nouveau driver(s) are still loaded do not proceed with the installation guide and troubleshoot why it's still loaded.

Option 2: Modify Grub load command
From this stackoverflow solution

  1. When the GRUB boot menu appears : Highlight the Ubuntu menu entry and press the E key. Add the nouveau.modeset=0 parameter to the end of the linux line ... Then press F10 to boot.
  2. When login page appears press [ctrl + ALt + F1]
  3. Enter username + password
  4. Uninstall every NVIDIA related software:
sudo apt-get purge nvidia*  
sudo reboot   

Installation steps

  1. update apt-get
sudo apt-get update
  1. Install apt-get deps
sudo apt-get install openjdk-8-jdk git python-dev python3-dev python-numpy python3-numpy build-essential python-pip python3-pip python-virtualenv swig python-wheel libcurl3-dev curl   
  1. install nvidia drivers
# The 16.04 installer works with 16.10.
# download drivers
curl -O http://developer.download.nvidia.com/compute/cuda/repos/ubuntu1604/x86_64/cuda-repo-ubuntu1604_9.0.176-1_amd64.deb

# download key to allow installation
sudo apt-key adv --fetch-keys http://developer.download.nvidia.com/compute/cuda/repos/ubuntu1604/x86_64/7fa2af80.pub

# install actual package
sudo dpkg -i ./cuda-repo-ubuntu1604_9.0.176-1_amd64.deb

#  install cuda (but it'll prompt to install other deps, so we try to install twice with a dep update in between
sudo apt-get update
sudo apt-get install cuda-9-0   

2a. reboot Ubuntu

sudo reboot

2b. check nvidia driver install

nvidia-smi   

# you should see a list of gpus printed    
# if not, the previous steps failed.   
  1. Install cudnn
wget https://s3.amazonaws.com/open-source-william-falcon/cudnn-9.0-linux-x64-v7.3.1.20.tgz
sudo tar -xzvf cudnn-9.0-linux-x64-v7.3.1.20.tgz
sudo cp cuda/include/cudnn.h /usr/local/cuda/include
sudo cp cuda/lib64/libcudnn* /usr/local/cuda/lib64
sudo chmod a+r /usr/local/cuda/include/cudnn.h /usr/local/cuda/lib64/libcudnn*
  1. Add these lines to end of ~/.bashrc:
export LD_LIBRARY_PATH="$LD_LIBRARY_PATH:/usr/local/cuda/lib64:/usr/local/cuda/extras/CUPTI/lib64"
export CUDA_HOME=/usr/local/cuda
export PATH="$PATH:/usr/local/cuda/bin"

4a. Reload bashrc

source ~/.bashrc
  1. Install miniconda
wget https://repo.continuum.io/miniconda/Miniconda3-latest-Linux-x86_64.sh
bash Miniconda3-latest-Linux-x86_64.sh   

# press s to skip terms   

# Do you approve the license terms? [yes|no]
# yes

# Miniconda3 will now be installed into this location:
# accept the location

# Do you wish the installer to prepend the Miniconda3 install location
# to PATH in your /home/ghost/.bashrc ? [yes|no]
# yes    

5a. Reload bashrc

source ~/.bashrc
  1. Create python 3.6 conda env to install tf
conda create -n tensorflow python=3.6

# press y a few times 
  1. Activate env
source activate tensorflow   
  1. update pip (might already be up to date, but just in case...)
pip install --upgrade pip
  1. Install stable tensorflow with GPU support for python 3.6
pip install --upgrade tensorflow-gpu

# If the above fails, try the part below
# pip install --ignore-installed --upgrade https://storage.googleapis.com/tensorflow/linux/gpu/tensorflow_gpu-1.2.0-cp36-cp36m-linux_x86_64.whl
  1. Test tf install
# start python shell   
python

# run test script   
import tensorflow as tf   

hello = tf.constant('Hello, TensorFlow!')

# when you run sess, you should see a bunch of lines with the word gpu in them (if install worked)
# otherwise, not running on gpu
sess = tf.Session()
print(sess.run(hello))

or alternatively

tf.enable_eager_execution(); print(tf.reduce_sum(tf.random_normal([1000, 1000])))"

Releases

No releases published

Packages

No packages published