-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathtrain_digits.py
112 lines (93 loc) · 4.63 KB
/
train_digits.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
#!/usr/bin/env python
"""
Train rand-cnn on digits datasets
Created by zhenlinx on 11/22/19
"""
import os
import sys
sys.path.append(os.path.abspath(''))
import random
import argparse
from torch.utils.data import dataloader
from lib.datasets import get_dataset
from lib.datasets.transforms import GreyToColor, IdentityTransform, ToGrayScale, LaplacianOfGaussianFiltering
from randconv_trainer import *
from lib.networks import get_network
def main(args):
print("Random Seed: ", args.rand_seed)
if args.rand_seed is not None:
random.seed(args.rand_seed)
torch.manual_seed(args.rand_seed)
if args.gpu_ids >= 0:
torch.cuda.manual_seed_all(args.rand_seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
np.random.seed(args.rand_seed)
data_dir = "./data"
mnist_c_dir = './data/mnist_c' # or change it to where you downloaded the mnist_c
domains = ['mnist', 'mnist_m', 'svhn', 'usps', 'synth']
args.n_classes = 10
args.data_name = 'digits'
args.image_size = 32
image_size = (32, 32)
if args.source == 'mnist10k':
domains[0] = 'mnist10k'
if args.multi_aug:
train_transform = transforms.Compose([
transforms.Resize(image_size),
transforms.ToTensor(),
GreyToColor(),
## for multiaug, the following two data transforms will be run on GPU to speedup preprocessing (see rand_cnn.py)
# transforms.ColorJitter(0.3, 0.3, 0.3, 0.3),
# transforms.RandomGrayscale(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
else:
train_transform = transforms.Compose([
transforms.Resize(image_size),
transforms.ColorJitter(brightness=0.5, contrast=0.5, saturation=0.5, hue=0.5)
if args.color_jitter else IdentityTransform(),
ToGrayScale(3) if args.grey else IdentityTransform(),
transforms.ToTensor(),
GreyToColor(),
LaplacianOfGaussianFiltering(size=3, sigma=1.0, identity_prob=0.5) if args.LoG else IdentityTransform(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
])
test_transform = transforms.Compose([
transforms.Resize(image_size),
ToGrayScale(3) if args.grey else IdentityTransform(),
transforms.ToTensor(),
GreyToColor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
])
print("\n=========Preparing Data=========")
assert args.source in domains, 'data_name can only be one of {}'.format(domains)
trainset = get_dataset(args.source, root=data_dir, train=True, download=True, transform=train_transform)
validsets = {domain: get_dataset(domain, root=data_dir, train=False, download=True, transform=test_transform) for domain in domains}
trainloaders = [torch.utils.data.DataLoader(trainset, batch_size=args.batch_size, shuffle=True, num_workers=8)]
validloaders = {d: torch.utils.data.DataLoader(
validsets[d], batch_size=512, shuffle=False, num_workers=2, pin_memory=True) for d in validsets}
# Model
print("\n=========Building Model=========")
net = get_network(args.net, num_classes=args.n_classes, pretrained=args.pretrained)
trainer = RandCNN(args)
trainer.train(net, trainloaders, validloaders, testloaders=None, data_mean=(0.5, 0.5, 0.5), data_std=((0.5, 0.5, 0.5)))
if args.test_corrupted:
from lib.datasets.mnist_c import _CORRUPTIONS
testdata = {type: get_dataset('mnist_c', root=mnist_c_dir, type=type, train=False, download=False, transform=train_transform) for type in _CORRUPTIONS[1:]}
testloaders = {name: torch.utils.data.DataLoader(testdata[name], batch_size=256, shuffle=False, num_workers=2) for
name in testdata.keys()}
else:
testdata = {d: get_dataset(d, root=data_dir, train=False, download=True, transform=train_transform) for d in domains}
testloaders = {d: torch.utils.data.DataLoader(testdata[d], batch_size=256, shuffle=False, num_workers=2) for d in domains}
trainer.run_testing(net, testloaders)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='PyTorch CIFAR10 Training')
add_basic_args(parser)
add_rand_layer_args(parser)
parser.add_argument('--source', '-sc', type=str, default='mnist10k', help='souce domain for training')
parser.add_argument('--target', '-tg', type=str, default='usps',
help='when target domain is given, use rest domains for training; '
'only effective when multi_source is true')
args = parser.parse_args()
main(args)