-
Notifications
You must be signed in to change notification settings - Fork 79
/
demod_2400.c
787 lines (644 loc) · 29 KB
/
demod_2400.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
// Part of readsb, a Mode-S/ADSB/TIS message decoder.
//
// demod_2400.c: 2.4MHz Mode S demodulator.
//
// Copyright (c) 2019 Michael Wolf <michael@mictronics.de>
//
// This code is based on a detached fork of dump1090-fa.
//
// Copyright (c) 2014,2015 Oliver Jowett <oliver@mutability.co.uk>
//
// This file is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// any later version.
//
// This file is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
#include "readsb.h"
#include <assert.h>
#ifdef MODEAC_DEBUG
#include <gd.h>
#endif
// 2.4MHz sampling rate version
//
// When sampling at 2.4MHz we have exactly 6 samples per 5 symbols.
// Each symbol is 500ns wide, each sample is 416.7ns wide
//
// We maintain a phase offset that is expressed in units of 1/5 of a sample i.e. 1/6 of a symbol, 83.333ns
// Each symbol we process advances the phase offset by 6 i.e. 6/5 of a sample, 500ns
//
// The correlation functions below correlate a 1-0 pair of symbols (i.e. manchester encoded 1 bit)
// starting at the given sample, and assuming that the symbol starts at a fixed 0-5 phase offset within
// m[0]. They return a correlation value, generally interpreted as >0 = 1 bit, <0 = 0 bit
// TODO check if there are better (or more balanced) correlation functions to use here
// nb: the correlation functions sum to zero, so we do not need to adjust for the DC offset in the input signal
// (adding any constant value to all of m[0..3] does not change the result)
// Changes 2020 by wiedehopf:
// 20 units per sample, 24 units per symbol that are distributed according to phase
// 1 bit has 2 symbols, in a bit representing a one the first symbol is high and the second is low
// The previous assumption was that symbols beyond our control are zero.
// Let's make the assumption that the symbols beyond our control are a statistical mean of 0 and 1.
// Such a mean is represented by 12 units per symbol.
// As an example for the above let's discuss the first slice function:
// Samples 0 and 1 are completely occupied by the bit we are trying to judge thus no outside symbols.
// The 3rd sample is 8 units of our bit and 12 units of the following symbol.
// Our bit contributes part of a low symbol represented by -8 units
// but we also get 12 units of 0.5 resulting in +6 units from the following symbol.
//
// The above comment is how these changes started out, i'll leave them here as food for thought.
// Using --ifile the coefficients from the above thought process were iteratively tweaked by hand.
// Note one of the correlation functions is no longer DC balanced (but just slightly)
// Further testing on your own samples using --ifile --quiet --stats is welcome
// Note you might need to use --throttle unless your using wiedehopf's readsb fork,
// otherwise position stats won't work as they rely on realtime differences between
// reception of CPRs.
// Creating a 5 minute sample with a gain of 43.9:
// timeout 300 rtl_sdr -f 1090000000 -s 2400000 -g 43.9 sample.dat
// Checking a set of correlation functions using the above sample:
// make && ./readsb --device-type ifile --ifile sample.dat --quiet --stats
static inline __attribute__((always_inline)) int slice_phase0(uint16_t *m) {
return 18 * m[0] - 15 * m[1] - 3 * m[2];
}
static inline __attribute__((always_inline)) int slice_phase1(uint16_t *m) {
return 14 * m[0] - 5 * m[1] - 9 * m[2];
}
// slightly DC unbalanced but better results
static inline __attribute__((always_inline)) int slice_phase2(uint16_t *m) {
return 16 * m[0] + 5 * m[1] - 20 * m[2];
}
static inline __attribute__((always_inline)) int slice_phase3(uint16_t *m) {
return 7 * m[0] + 11 * m[1] - 18 * m[2];
}
static inline __attribute__((always_inline)) int slice_phase4(uint16_t *m) {
return 4 * m[0] + 15 * m[1] - 20 * m[2] + 1 * m[3];
}
static uint32_t valid_df_short_bitset; // set of acceptable DF values for short messages
static uint32_t valid_df_long_bitset; // set of acceptable DF values for long messages
static uint32_t generate_damage_set(uint8_t df, unsigned damage_bits)
{
uint32_t result = (1 << df);
if (!damage_bits)
return result;
for (unsigned bit = 0; bit < 5; ++bit) {
unsigned damaged_df = df ^ (1 << bit);
result |= generate_damage_set(damaged_df, damage_bits - 1);
}
return result;
}
static void init_bitsets()
{
// DFs that we directly understand without correction
valid_df_short_bitset = (1 << 0) | (1 << 4) | (1 << 5) | (1 << 11);
valid_df_long_bitset = (1 << 16) | (1 << 17) | (1 << 18) | (1 << 20) | (1 << 21);
#ifdef ENABLE_DF24
if (1)
valid_df_long_bitset |= (1 << 24) | (1 << 25) | (1 << 26) | (1 << 27) | (1 << 28) | (1 << 29) | (1 << 30) | (1 << 31);
#endif
// if we can also repair DF damage, include those corrections
if (Modes.fixDF && Modes.nfix_crc) {
// only correct for possible DF17, other types are less useful usually (DF11/18 would also be possible)
valid_df_long_bitset |= generate_damage_set(17, 1);
}
}
// extract one byte from the mag buffers using slice_phase functions
// advance pPtr and phase
static inline __attribute__((always_inline)) uint8_t slice_byte(uint16_t **pPtr, int *phase) {
uint8_t theByte = 0;
switch (*phase) {
case 0:
theByte =
(slice_phase0(*pPtr) > 0 ? 0x80 : 0) |
(slice_phase2(*pPtr+2) > 0 ? 0x40 : 0) |
(slice_phase4(*pPtr+4) > 0 ? 0x20 : 0) |
(slice_phase1(*pPtr+7) > 0 ? 0x10 : 0) |
(slice_phase3(*pPtr+9) > 0 ? 0x08 : 0) |
(slice_phase0(*pPtr+12) > 0 ? 0x04 : 0) |
(slice_phase2(*pPtr+14) > 0 ? 0x02 : 0) |
(slice_phase4(*pPtr+16) > 0 ? 0x01 : 0);
*phase = 1;
*pPtr += 19;
break;
case 1:
theByte =
(slice_phase1(*pPtr) > 0 ? 0x80 : 0) |
(slice_phase3(*pPtr+2) > 0 ? 0x40 : 0) |
(slice_phase0(*pPtr+5) > 0 ? 0x20 : 0) |
(slice_phase2(*pPtr+7) > 0 ? 0x10 : 0) |
(slice_phase4(*pPtr+9) > 0 ? 0x08 : 0) |
(slice_phase1(*pPtr+12) > 0 ? 0x04 : 0) |
(slice_phase3(*pPtr+14) > 0 ? 0x02 : 0) |
(slice_phase0(*pPtr+17) > 0 ? 0x01 : 0);
*phase = 2;
*pPtr += 19;
break;
case 2:
theByte =
(slice_phase2(*pPtr) > 0 ? 0x80 : 0) |
(slice_phase4(*pPtr+2) > 0 ? 0x40 : 0) |
(slice_phase1(*pPtr+5) > 0 ? 0x20 : 0) |
(slice_phase3(*pPtr+7) > 0 ? 0x10 : 0) |
(slice_phase0(*pPtr+10) > 0 ? 0x08 : 0) |
(slice_phase2(*pPtr+12) > 0 ? 0x04 : 0) |
(slice_phase4(*pPtr+14) > 0 ? 0x02 : 0) |
(slice_phase1(*pPtr+17) > 0 ? 0x01 : 0);
*phase = 3;
*pPtr += 19;
break;
case 3:
theByte =
(slice_phase3(*pPtr) > 0 ? 0x80 : 0) |
(slice_phase0(*pPtr+3) > 0 ? 0x40 : 0) |
(slice_phase2(*pPtr+5) > 0 ? 0x20 : 0) |
(slice_phase4(*pPtr+7) > 0 ? 0x10 : 0) |
(slice_phase1(*pPtr+10) > 0 ? 0x08 : 0) |
(slice_phase3(*pPtr+12) > 0 ? 0x04 : 0) |
(slice_phase0(*pPtr+15) > 0 ? 0x02 : 0) |
(slice_phase2(*pPtr+17) > 0 ? 0x01 : 0);
*phase = 4;
*pPtr += 19;
break;
case 4:
theByte =
(slice_phase4(*pPtr) > 0 ? 0x80 : 0) |
(slice_phase1(*pPtr+3) > 0 ? 0x40 : 0) |
(slice_phase3(*pPtr+5) > 0 ? 0x20 : 0) |
(slice_phase0(*pPtr+8) > 0 ? 0x10 : 0) |
(slice_phase2(*pPtr+10) > 0 ? 0x08 : 0) |
(slice_phase4(*pPtr+12) > 0 ? 0x04 : 0) |
(slice_phase1(*pPtr+15) > 0 ? 0x02 : 0) |
(slice_phase3(*pPtr+17) > 0 ? 0x01 : 0);
*phase = 0;
*pPtr += 20;
break;
}
return theByte;
}
static void score_phase(int try_phase, uint16_t *pa, unsigned char **bestmsg, int *bestscore, int *bestphase, unsigned char **msg, unsigned char *msg1, unsigned char *msg2) {
Modes.stats_current.demod_preamblePhase[try_phase - 4]++;
uint16_t *pPtr;
int phase, score, bytelen;
pPtr = pa + 19 + (try_phase / 5);
phase = try_phase % 5;
(*msg)[0] = slice_byte(&pPtr, &phase);
// inspect DF field early, only continue processing
// messages where the DF appears valid
uint32_t df = ((uint8_t) (*msg)[0]) >> 3;
if (valid_df_long_bitset & (1 << df)) {
bytelen = MODES_LONG_MSG_BYTES;
} else if (valid_df_short_bitset & (1 << df)) {
bytelen = MODES_SHORT_MSG_BYTES;
} else {
score = -2;
if (score > *bestscore) {
// this is only for preamble stats
*bestscore = score;
}
return;
}
for (int i = 1; i < bytelen; ++i) {
(*msg)[i] = slice_byte(&pPtr, &phase);
}
// Score the mode S message and see if it's any good.
score = scoreModesMessage(*msg, bytelen * 8);
if (score > *bestscore) {
// new high score!
*bestmsg = *msg;
*bestscore = score;
*bestphase = try_phase;
// swap to using the other buffer so we don't clobber our demodulated data
// (if we find a better result then we'll swap back, but that's OK because
// we no longer need this copy if we found a better one)
*msg = (*msg == msg1) ? msg2 : msg1;
}
}
//
// Given 'mlen' magnitude samples in 'm', sampled at 2.4MHz,
// try to demodulate some Mode S messages.
//
void demodulate2400(struct mag_buf *mag) {
unsigned char msg1[MODES_LONG_MSG_BYTES], msg2[MODES_LONG_MSG_BYTES], *msg;
unsigned char *bestmsg = NULL;
int bestscore;
int bestphase = 0;
uint16_t *m = mag->data;
uint32_t mlen = mag->length;
uint64_t sum_scaled_signal_power = 0;
// initialize bitsets on first call
if (!valid_df_short_bitset)
init_bitsets();
msg = msg1;
// advance ifile artificial clock even if we don't receive anything
if (Modes.sdr_type == SDR_IFILE && Modes.synthetic_now) {
Modes.synthetic_now = mag->sysTimestamp;
}
uint16_t *pa = m;
uint16_t *stop = m + mlen;
uint16_t *statsProgress = m;
const uint32_t statsWindow = MODES_SHORT_MSG_SAMPLES / 2; // half a short message
uint32_t loudEvents = 0;
uint32_t noiseLowSamples = 0;
uint32_t noiseHighSamples = 0;
const uint32_t loudThreshold = Modes.loudThreshold * Modes.loudThreshold * statsWindow;
const uint32_t noiseLowThreshold = Modes.noiseLowThreshold * Modes.noiseLowThreshold * statsWindow;
const uint32_t noiseHighThreshold = Modes.noiseHighThreshold * Modes.noiseHighThreshold * statsWindow;
for (; pa < stop; pa++) {
int32_t pa_mag, base_noise, ref_level;
int msglen;
// Look for a message starting at around sample 0 with phase offset 3..7
// Ideal sample values for preambles with different phase
// Xn is the first data symbol with phase offset N
//
// sample#: 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0
// phase 3: 2/4\0/5\1 0 0 0 0/5\1/3 3\0 0 0 0 0 0 X4
// phase 4: 1/5\0/4\2 0 0 0 0/4\2 2/4\0 0 0 0 0 0 0 X0
// phase 5: 0/5\1/3 3\0 0 0 0/3 3\1/5\0 0 0 0 0 0 0 X1
// phase 6: 0/4\2 2/4\0 0 0 0 2/4\0/5\1 0 0 0 0 0 0 X2
// phase 7: 0/3 3\1/5\0 0 0 0 1/5\0/4\2 0 0 0 0 0 0 X3
// do a pre-check to reduce CPU usage
// some silly unrolling that cuts CPU cycles
// due to plenty room in the message buffer for decoding
// we can with pa go beyond stop without a buffer overrun ...
if (Modes.autoGain && pa >= statsProgress) {
uint32_t magSum = 0;
for (uint32_t i = 0; i < statsWindow; i++) {
magSum += pa[i];
}
loudEvents += (magSum > loudThreshold);
noiseLowSamples += statsWindow * (magSum < noiseLowThreshold);
noiseHighSamples += statsWindow * (magSum < noiseHighThreshold);
statsProgress = pa + statsWindow;
}
if (pa[1] > pa[7] && pa[12] > pa[14] && pa[12] > pa[15]) { goto after_pre; }
pa++; if (pa[1] > pa[7] && pa[12] > pa[14] && pa[12] > pa[15]) { goto after_pre; }
pa++; if (pa[1] > pa[7] && pa[12] > pa[14] && pa[12] > pa[15]) { goto after_pre; }
pa++; if (pa[1] > pa[7] && pa[12] > pa[14] && pa[12] > pa[15]) { goto after_pre; }
pa++; if (pa[1] > pa[7] && pa[12] > pa[14] && pa[12] > pa[15]) { goto after_pre; }
pa++; if (pa[1] > pa[7] && pa[12] > pa[14] && pa[12] > pa[15]) { goto after_pre; }
pa++; if (pa[1] > pa[7] && pa[12] > pa[14] && pa[12] > pa[15]) { goto after_pre; }
pa++; if (pa[1] > pa[7] && pa[12] > pa[14] && pa[12] > pa[15]) { goto after_pre; }
pa++; if (pa[1] > pa[7] && pa[12] > pa[14] && pa[12] > pa[15]) { goto after_pre; }
pa++; if (pa[1] > pa[7] && pa[12] > pa[14] && pa[12] > pa[15]) { goto after_pre; }
continue;
after_pre:
// ... but we must NOT decode if have ran past stop
if (!(pa < stop))
continue;
// 5 noise samples
base_noise = pa[5] + pa[8] + pa[16] + pa[17] + pa[18];
// pa_mag is the sum of the 4 preamble high bits
// minus 2 low bits between each of high bit pairs
// reduce number of preamble detections if we recently dropped samples
if (Modes.stats_15min.samples_dropped)
ref_level = base_noise * imax(PREAMBLE_THRESHOLD_PIZERO, Modes.preambleThreshold);
else
ref_level = base_noise * Modes.preambleThreshold;
ref_level >>= 5; // divide by 32
bestscore = -42;
int32_t diff_2_3 = pa[2] - pa[3];
int32_t sum_1_4 = pa[1] + pa[4];
int32_t diff_10_11 = pa[10] - pa[11];
int32_t common3456 = sum_1_4 - diff_2_3 + pa[9] + pa[12];
// sample#: 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0
// phase 3: 2/4\0/5\1 0 0 0 0/5\1/3 3\0 0 0 0 0 0 X4
// phase 4: 1/5\0/4\2 0 0 0 0/4\2 2/4\0 0 0 0 0 0 0 X0
pa_mag = common3456 - diff_10_11;
if (pa_mag >= ref_level) {
// peaks at 1,3,9,11-12: phase 3
score_phase(4, pa, &bestmsg, &bestscore, &bestphase, &msg, msg1, msg2);
// peaks at 1,3,9,12: phase 4
score_phase(5, pa, &bestmsg, &bestscore, &bestphase, &msg, msg1, msg2);
}
// sample#: 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0
// phase 5: 0/5\1/3 3\0 0 0 0/3 3\1/5\0 0 0 0 0 0 0 X1
// phase 6: 0/4\2 2/4\0 0 0 0 2/4\0/5\1 0 0 0 0 0 0 X2
pa_mag = common3456 + diff_10_11;
if (pa_mag >= ref_level) {
// peaks at 1,3-4,9-10,12: phase 5
score_phase(6, pa, &bestmsg, &bestscore, &bestphase, &msg, msg1, msg2);
// peaks at 1,4,10,12: phase 6
score_phase(7, pa, &bestmsg, &bestscore, &bestphase, &msg, msg1, msg2);
}
// peaks at 1-2,4,10,12: phase 7
// sample#: 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0
// phase 7: 0/3 3\1/5\0 0 0 0 1/5\0/4\2 0 0 0 0 0 0 X3
pa_mag = sum_1_4 + 2 * diff_2_3 + diff_10_11 + pa[12];
if (pa_mag >= ref_level)
score_phase(8, pa, &bestmsg, &bestscore, &bestphase, &msg, msg1, msg2);
// no preamble detected
if (bestscore == -42)
continue;
// we had at least one phase greater than the preamble threshold
// and used scoremodesmessage on those bytes
Modes.stats_current.demod_preambles++;
// Do we have a candidate?
if (bestscore < 0) {
if (bestscore == -1)
Modes.stats_current.demod_rejected_unknown_icao++;
else
Modes.stats_current.demod_rejected_bad++;
continue; // nope.
}
msglen = modesMessageLenByType(getbits(bestmsg, 1, 5));
struct modesMessage *mm = netGetMM(&Modes.netMessageBuffer[0]);
// For consistency with how the Beast / Radarcape does it,
// we report the timestamp at the end of bit 56 (even if
// the frame is a 112-bit frame)
mm->timestamp = mag->sampleTimestamp + (pa -m) * 5 + (8 + 56) * 12 + bestphase;
// compute message receive time as block-start-time + difference in the 12MHz clock
mm->sysTimestamp = mag->sysTimestamp + receiveclock_ms_elapsed(mag->sampleTimestamp, mm->timestamp);
// advance ifile artifical clock for every message received
if (Modes.sdr_type == SDR_IFILE && Modes.synthetic_now) {
Modes.synthetic_now = mm->sysTimestamp;
}
mm->score = bestscore;
// Decode the received message
{
memcpy(mm->msg, bestmsg, MODES_LONG_MSG_BYTES);
int result = decodeModesMessage(mm);
if (result < 0) {
if (result == -1)
Modes.stats_current.demod_rejected_unknown_icao++;
else
Modes.stats_current.demod_rejected_bad++;
continue;
} else {
Modes.stats_current.demod_accepted[mm->correctedbits]++;
}
}
Modes.stats_current.demod_bestPhase[bestphase - 4]++;
// measure signal power
{
double signal_power;
uint64_t scaled_signal_power = 0;
int signal_len = msglen * 12 / 5;
int k;
for (k = 0; k < signal_len; ++k) {
uint32_t mag = pa[19 + k];
scaled_signal_power += mag * mag;
}
signal_power = scaled_signal_power / 65535.0 / 65535.0;
mm->signalLevel = signal_power / signal_len;
Modes.stats_current.signal_power_sum += signal_power;
Modes.stats_current.signal_power_count += signal_len;
sum_scaled_signal_power += scaled_signal_power;
if (mm->signalLevel > Modes.stats_current.peak_signal_power)
Modes.stats_current.peak_signal_power = mm->signalLevel;
if (mm->signalLevel > 0.50119)
Modes.stats_current.strong_signal_count++; // signal power above -3dBFS
}
// Skip over the message:
// (we actually skip to 8 bits before the end of the message,
// because we can often decode two messages that *almost* collide,
// where the preamble of the second message clobbered the last
// few bits of the first message, but the message bits didn't
// overlap)
//pa += msglen * 12 / 5;
//
// let's test something, only jump part of the message and let the preamble detection handle the rest.
pa += msglen * 8 / 4;
// Pass data to the next layer
netUseMessage(mm);
}
mag->loudEvents = loudEvents;
mag->noiseLowSamples = noiseLowSamples;
mag->noiseHighSamples = noiseHighSamples;
/* update noise power */
{
double sum_signal_power = sum_scaled_signal_power / 65535.0 / 65535.0;
Modes.stats_current.noise_power_sum += (mag->mean_power * mag->length - sum_signal_power);
Modes.stats_current.noise_power_count += mag->length;
}
netDrainMessageBuffers();
}
#ifdef MODEAC_DEBUG
static int yscale(unsigned signal) {
return (int) (299 - 299.0 * signal / 65536.0);
}
static void draw_modeac(uint16_t *m, unsigned modeac, unsigned f1_clock, unsigned noise_threshold, unsigned signal_threshold, unsigned bits, unsigned noisy_bits, unsigned uncertain_bits) {
// 25 bits at 87*60MHz
// use 1 pixel = 30MHz = 1087 pixels
gdImagePtr im = gdImageCreate(1088, 300);
int red = gdImageColorAllocate(im, 255, 0, 0);
int brightgreen = gdImageColorAllocate(im, 0, 255, 0);
int darkgreen = gdImageColorAllocate(im, 0, 180, 0);
int blue = gdImageColorAllocate(im, 0, 0, 255);
int grey = gdImageColorAllocate(im, 200, 200, 200);
int white = gdImageColorAllocate(im, 255, 255, 255);
int black = gdImageColorAllocate(im, 0, 0, 0);
gdImageFilledRectangle(im, 0, 0, 1087, 299, white);
// draw samples
for (unsigned pixel = 0; pixel < 1088; ++pixel) {
int clock_offset = (pixel - 150) * 2;
int bit = clock_offset / 87;
int sample = (f1_clock + clock_offset) / 25;
int bitoffset = clock_offset % 87;
int color;
if (sample < 0)
continue;
if (clock_offset < 0 || bit >= 20) {
color = grey;
} else if (bitoffset < 27 && (uncertain_bits & (1 << (19 - bit)))) {
color = red;
} else if (bitoffset >= 27 && (noisy_bits & (1 << (19 - bit)))) {
color = red;
} else if (bitoffset >= 27) {
color = grey;
} else if (bits & (1 << (19 - bit))) {
color = brightgreen;
} else {
color = darkgreen;
}
gdImageLine(im, pixel, 299, pixel, yscale(m[sample]), color);
}
// draw bit boundaries
for (unsigned bit = 0; bit < 20; ++bit) {
unsigned clock = 87 * bit;
unsigned pixel0 = clock / 2 + 150;
unsigned pixel1 = (clock + 27) / 2 + 150;
gdImageLine(im, pixel0, 0, pixel0, 299, (bit == 0 || bit == 14) ? black : grey);
gdImageLine(im, pixel1, 0, pixel1, 299, (bit == 0 || bit == 14) ? black : grey);
}
// draw thresholds
gdImageLine(im, 0, yscale(noise_threshold), 1087, yscale(noise_threshold), blue);
gdImageLine(im, 0, yscale(signal_threshold), 1087, yscale(signal_threshold), blue);
// save it
static int file_counter;
char filename[PATH_MAX];
sprintf(filename, "modeac_%04X_%04d.png", modeac, ++file_counter);
fprintf(stderr, "writing %s\n", filename);
FILE *pngout = fopen(filename, "wb");
gdImagePng(im, pngout);
fclose(pngout);
gdImageDestroy(im);
}
#endif
//////////
////////// MODE A/C
//////////
// Mode A/C bits are 1.45us wide, consisting of 0.45us on and 1.0us off
// We track this in terms of a (virtual) 60MHz clock, which is the lowest common multiple
// of the bit frequency and the 2.4MHz sampling frequency
//
// 0.45us = 27 cycles }
// 1.00us = 60 cycles } one bit period = 1.45us = 87 cycles
//
// one 2.4MHz sample = 25 cycles
void demodulate2400AC(struct mag_buf *mag) {
uint16_t *m = mag->data;
uint32_t mlen = mag->length;
unsigned f1_sample;
double noise_stddev = sqrt(mag->mean_power - mag->mean_level * mag->mean_level); // Var(X) = E[(X-E[X])^2] = E[X^2] - (E[X])^2
unsigned noise_level = (unsigned) ((mag->mean_power + noise_stddev) * 65535 + 0.5);
for (f1_sample = 1; f1_sample < mlen; ++f1_sample) {
// Mode A/C messages should match this bit sequence:
// bit # value
// -1 0 quiet zone
// 0 1 framing pulse (F1)
// 1 C1
// 2 A1
// 3 C2
// 4 A2
// 5 C4
// 6 A4
// 7 0 quiet zone (X1)
// 8 B1
// 9 D1
// 10 B2
// 11 D2
// 12 B4
// 13 D4
// 14 1 framing pulse (F2)
// 15 0 quiet zone (X2)
// 16 0 quiet zone (X3)
// 17 SPI
// 18 0 quiet zone (X4)
// 19 0 quiet zone (X5)
// Look for a F1 and F2 pair,
// with F1 starting at offset f1_sample.
// the first framing pulse covers 3.5 samples:
//
// |----| |----|
// | F1 |________| C1 |_
//
// | 0 | 1 | 2 | 3 | 4 |
//
// and there is some unknown phase offset of the
// leading edge e.g.:
//
// |----| |----|
// __| F1 |________| C1 |_
//
// | 0 | 1 | 2 | 3 | 4 |
//
// in theory the "on" period can straddle 3 samples
// but it's not a big deal as at most 4% of the power
// is in the third sample.
if (!(m[f1_sample - 1] < m[f1_sample + 0]))
continue; // not a rising edge
if (m[f1_sample + 2] > m[f1_sample + 0] || m[f1_sample + 2] > m[f1_sample + 1])
continue; // quiet part of bit wasn't sufficiently quiet
unsigned f1_level = (m[f1_sample + 0] + m[f1_sample + 1]) / 2;
if (noise_level * 2 > f1_level) {
// require 6dB above noise
continue;
}
// estimate initial clock phase based on the amount of power
// that ended up in the second sample
float f1a_power = (float) m[f1_sample] * m[f1_sample];
float f1b_power = (float) m[f1_sample + 1] * m[f1_sample + 1];
float fraction = f1b_power / (f1a_power + f1b_power);
unsigned f1_clock = (unsigned) (25 * (f1_sample + fraction * fraction) + 0.5);
// same again for F2
// F2 is 20.3us / 14 bit periods after F1
unsigned f2_clock = f1_clock + (87 * 14);
unsigned f2_sample = f2_clock / 25;
assert(f2_sample < mlen + Modes.trailing_samples);
if (!(m[f2_sample - 1] < m[f2_sample + 0]))
continue;
if (m[f2_sample + 2] > m[f2_sample + 0] || m[f2_sample + 2] > m[f2_sample + 1])
continue; // quiet part of bit wasn't sufficiently quiet
unsigned f2_level = (m[f2_sample + 0] + m[f2_sample + 1]) / 2;
if (noise_level * 2 > f2_level) {
// require 6dB above noise
continue;
}
unsigned f1f2_level = (f1_level > f2_level ? f1_level : f2_level);
float midpoint = sqrtf(noise_level * f1f2_level); // geometric mean of the two levels
unsigned signal_threshold = (unsigned) (midpoint * M_SQRT2 + 0.5); // +3dB
unsigned noise_threshold = (unsigned) (midpoint / M_SQRT2 + 0.5); // -3dB
// Looks like a real signal. Demodulate all the bits.
unsigned uncertain_bits = 0;
unsigned noisy_bits = 0;
unsigned bits = 0;
unsigned bit;
unsigned clock;
for (bit = 0, clock = f1_clock; bit < 20; ++bit, clock += 87) {
unsigned sample = clock / 25;
bits <<= 1;
noisy_bits <<= 1;
uncertain_bits <<= 1;
// check for excessive noise in the quiet period
if (m[sample + 2] >= signal_threshold) {
noisy_bits |= 1;
}
// decide if this bit is on or off
if (m[sample + 0] >= signal_threshold || m[sample + 1] >= signal_threshold) {
bits |= 1;
} else if (m[sample + 0] > noise_threshold && m[sample + 1] > noise_threshold) {
/* not certain about this bit */
uncertain_bits |= 1;
} else {
/* this bit is off */
}
}
// framing bits must be on
if ((bits & 0x80020) != 0x80020) {
continue;
}
// quiet bits must be off
if ((bits & 0x0101B) != 0) {
continue;
}
if (noisy_bits || uncertain_bits) {
continue;
}
// Convert to the form that we use elsewhere:
// 00 A4 A2 A1 00 B4 B2 B1 SPI C4 C2 C1 00 D4 D2 D1
unsigned modeac =
((bits & 0x40000) ? 0x0010 : 0) | // C1
((bits & 0x20000) ? 0x1000 : 0) | // A1
((bits & 0x10000) ? 0x0020 : 0) | // C2
((bits & 0x08000) ? 0x2000 : 0) | // A2
((bits & 0x04000) ? 0x0040 : 0) | // C4
((bits & 0x02000) ? 0x4000 : 0) | // A4
((bits & 0x00800) ? 0x0100 : 0) | // B1
((bits & 0x00400) ? 0x0001 : 0) | // D1
((bits & 0x00200) ? 0x0200 : 0) | // B2
((bits & 0x00100) ? 0x0002 : 0) | // D2
((bits & 0x00080) ? 0x0400 : 0) | // B4
((bits & 0x00040) ? 0x0004 : 0) | // D4
((bits & 0x00004) ? 0x0080 : 0); // SPI
#ifdef MODEAC_DEBUG
draw_modeac(m, modeac, f1_clock, noise_threshold, signal_threshold, bits, noisy_bits, uncertain_bits);
#endif
// This message looks good, submit it
struct modesMessage *mm = netGetMM(&Modes.netMessageBuffer[0]);
// For consistency with how the Beast / Radarcape does it,
// we report the timestamp at the second framing pulse (F2)
mm->timestamp = mag->sampleTimestamp + f2_clock / 5; // 60MHz -> 12MHz
// compute message receive time as block-start-time + difference in the 12MHz clock
mm->sysTimestamp = mag->sysTimestamp + receiveclock_ms_elapsed(mag->sampleTimestamp, mm->timestamp);
decodeModeAMessage(mm, modeac);
// Pass data to the next layer
netUseMessage(mm);
f1_sample += (20 * 87 / 25);
Modes.stats_current.demod_modeac++;
}
netDrainMessageBuffers();
}