Skip to content

Latest commit

 

History

History
1195 lines (789 loc) · 40 KB

CS231n 1:Python Numpy教程.md

File metadata and controls

1195 lines (789 loc) · 40 KB

CS231n课程笔记翻译:Python Numpy教程 - 知乎专栏

杜客 Source

译者注:本文智能单元首发,翻译自斯坦福CS231n课程笔记Python Numpy Tutorial__,由课程教师Andrej Karpathy__授权进行翻译。本篇教程由杜客翻译完成,Flood SungSunisDown巩子嘉和一位不愿透露ID的知友对本翻译亦有贡献。

原文如下

这篇教程由Justin Johnson__创作。

我们将使用Python编程语言来完成本课程的所有作业。Python是一门伟大的通用编程语言,在一些常用库(numpy, scipy, matplotlib)的帮助下,它又会变成一个强大的科学计算环境。

我们期望你们中大多数人对于Python语言和Numpy库比较熟悉,而对于没有Python经验的同学,这篇教程可以帮助你们快速了解Python编程环境和如何使用Python作为科学计算工具。

一部分同学对于Matlab有一定经验。对于这部分同学,我们推荐阅读 numpy for Matlab users__页面。

你们还可以查看本教程的IPython notebook版__。该教程是由Volodymyr Kuleshov__Isaac Caswell__为课程CS 228__创建的。

内容列表:

  • Python
    • 基本数据类型
    • 容器
    • 函数
  • Numpy
    • 数组
    • 访问数组
    • 数据类型
    • 数组计算
    • 广播
  • SciPy
    • 图像操作
    • MATLAB文件
    • 点之间的距离
  • Matplotlib
    • 绘制图形
    • 绘制多个图形
    • 图像

Python

Python是一种高级的,动态类型的多范型编程语言。很多时候,大家会说Python看起来简直和伪代码一样,这是因为你能够通过很少行数的代码表达出很有力的思想。举个例子,下面是用Python实现的经典的quicksort算法例子:

    def quicksort(arr):
        if len(arr) <= 1:
            return arr
        pivot = arr[len(arr) / 2]
        left = [x for x in arr if x < pivot]
        middle = [x for x in arr if x == pivot]
        right = [x for x in arr if x > pivot]
        return quicksort(left) + middle + quicksort(right)
    
    print quicksort([3,6,8,10,1,2,1])
    # Prints "[1, 1, 2, 3, 6, 8, 10]"

Python版本

Python有两个支持的版本,分别是2.7和3.4。这有点让人迷惑,3.0向语言中引入了很多不向后兼容的变化,2.7下的代码有时候在3.4下是行不通的。在这个课程中,我们使用的是2.7版本。

如何查看版本呢?使用python --version命令。

基本数据类型

和大多数编程语言一样,Python拥有一系列的基本数据类型,比如整型、浮点型、布尔型和字符串等。这些类型的使用方式和在其他语言中的使用方式是类似的。

数字:整型和浮点型的使用与其他语言类似。

    x = 3
    print type(x) # Prints ""
    print x       # Prints "3"
    print x + 1   # Addition; prints "4"
    print x - 1   # Subtraction; prints "2"
    print x * 2   # Multiplication; prints "6"
    print x ** 2  # Exponentiation; prints "9"
    x += 1
    print x  # Prints "4"
    x *= 2
    print x  # Prints "8"
    y = 2.5
    print type(y) # Prints ""
    print y, y + 1, y * 2, y ** 2 # Prints "2.5 3.5 5.0 6.25"

需要注意的是,Python中没有 x++ 和 x-- 的操作符。

Python也有内置的长整型和复杂数字类型,具体细节可以查看文档__

布尔型:Python实现了所有的布尔逻辑,但用的是英语,而不是我们习惯的操作符(比如&&和||等)。

    t = True
    f = False
    print type(t) # Prints ""
    print t and f # Logical AND; prints "False"
    print t or f  # Logical OR; prints "True"
    print not t   # Logical NOT; prints "False"
    print t != f  # Logical XOR; prints "True"  

字符串:Python对字符串的支持非常棒。

    hello = 'hello'   # String literals can use single quotes
    world = "world"   # or double quotes; it does not matter.
    print hello       # Prints "hello"
    print len(hello)  # String length; prints "5"
    hw = hello + ' ' + world  # String concatenation
    print hw  # prints "hello world"
    hw12 = '%s %s %d' % (hello, world, 12)  # sprintf style string formatting
    print hw12  # prints "hello world 12"

字符串对象有一系列有用的方法,比如:

    s = "hello"
    print s.capitalize()  # Capitalize a string; prints "Hello"
    print s.upper()       # Convert a string to uppercase; prints "HELLO"
    print s.rjust(7)      # Right-justify a string, padding with spaces; prints "  hello"
    print s.center(7)     # Center a string, padding with spaces; prints " hello "
    print s.replace('l', '(ell)')  # Replace all instances of one substring with another;
                                   # prints "he(ell)(ell)o"
    print '  world '.strip()  # Strip leading and trailing whitespace; prints "world"

如果想详细查看字符串方法,请看文档__

容器Containers

译者注:有知友建议container翻译为复合数据类型,供读者参考。

Python有以下几种容器类型:列表(lists)、字典(dictionaries)、集合(sets)和元组(tuples)。

列表Lists

列表就是Python中的数组,但是列表长度可变,且能包含不同类型元素。

    xs = [3, 1, 2]   # Create a list
    print xs, xs[2]  # Prints "[3, 1, 2] 2"
    print xs[-1]     # Negative indices count from the end of the list; prints "2"
    xs[2] = 'foo'    # Lists can contain elements of different types
    print xs         # Prints "[3, 1, 'foo']"
    xs.append('bar') # Add a new element to the end of the list
    print xs         # Prints 
    x = xs.pop()     # Remove and return the last element of the list
    print x, xs      # Prints "bar [3, 1, 'foo']"

列表的细节,同样可以查阅文档__

切片Slicing:为了一次性地获取列表中的元素,Python提供了一种简洁的语法,这就是切片。

    nums = range(5)    # range is a built-in function that creates a list of integers
    print nums         # Prints "[0, 1, 2, 3, 4]"
    print nums[2:4]    # Get a slice from index 2 to 4 (exclusive); prints "[2, 3]"
    print nums[2:]     # Get a slice from index 2 to the end; prints "[2, 3, 4]"
    print nums[:2]     # Get a slice from the start to index 2 (exclusive); prints "[0, 1]"
    print nums[:]      # Get a slice of the whole list; prints ["0, 1, 2, 3, 4]"
    print nums[:-1]    # Slice indices can be negative; prints ["0, 1, 2, 3]"
    nums[2:4] = [8, 9] # Assign a new sublist to a slice
    print nums         # Prints "[0, 1, 8, 8, 4]"

在Numpy数组的内容中,我们会再次看到切片语法。

循环Loops:我们可以这样遍历列表中的每一个元素:

    animals = ['cat', 'dog', 'monkey']
    for animal in animals:
        print animal
    # Prints "cat", "dog", "monkey", each on its own line.

如果想要在循环体内访问每个元素的指针,可以使用内置的enumerate函数

    animals = ['cat', 'dog', 'monkey']
    for idx, animal in enumerate(animals):
        print '#%d: %s' % (idx + 1, animal)
    # Prints "#1: cat", "#2: dog", "#3: monkey", each on its own line

列表推导List comprehensions:在编程的时候,我们常常想要将一种数据类型转换为另一种。下面是一个简单例子,将列表中的每个元素变成它的平方。

    nums = [0, 1, 2, 3, 4]
    squares = []
    for x in nums:
        squares.append(x ** 2)
    print squares   # Prints [0, 1, 4, 9, 16]

使用列表推导,你就可以让代码简化很多:

    nums = [0, 1, 2, 3, 4]
    squares = [x ** 2 for x in nums]
    print squares   # Prints [0, 1, 4, 9, 16]

列表推导还可以包含条件:

    nums = [0, 1, 2, 3, 4]
    even_squares = [x ** 2 for x in nums if x % 2 == 0]
    print even_squares  # Prints "[0, 4, 16]"

字典Dictionaries

字典用来储存(键, 值)对,这和Java中的Map差不多。你可以这样使用它:

    d = {'cat': 'cute', 'dog': 'furry'}  # Create a new dictionary with some data
    print d['cat']       # Get an entry from a dictionary; prints "cute"
    print 'cat' in d     # Check if a dictionary has a given key; prints "True"
    d['fish'] = 'wet'    # Set an entry in a dictionary
    print d['fish']      # Prints "wet"
    # print d['monkey']  # KeyError: 'monkey' not a key of d
    print d.get('monkey', 'N/A')  # Get an element with a default; prints "N/A"
    print d.get('fish', 'N/A')    # Get an element with a default; prints "wet"
    del d['fish']        # Remove an element from a dictionary
    print d.get('fish', 'N/A') # "fish" is no longer a key; prints "N/A"

想要知道字典的其他特性,请查阅文档__

循环Loops:在字典中,用键来迭代更加容易。

    d = {'person': 2, 'cat': 4, 'spider': 8}
    for animal in d:
        legs = d[animal]
        print 'A %s has %d legs' % (animal, legs)
    # Prints "A person has 2 legs", "A spider has 8 legs", "A cat has 4 legs"

如果你想要访问键和对应的值,那就使用iteritems方法:

    d = {'person': 2, 'cat': 4, 'spider': 8}
    for animal, legs in d.iteritems():
        print 'A %s has %d legs' % (animal, legs)
    # Prints "A person has 2 legs", "A spider has 8 legs", "A cat has 4 legs"

字典推导Dictionary comprehensions:和列表推导类似,但是允许你方便地构建字典。

    nums = [0, 1, 2, 3, 4]
    even_num_to_square = {x: x ** 2 for x in nums if x % 2 == 0}
    print even_num_to_square  # Prints "{0: 0, 2: 4, 4: 16}"

集合Sets

集合是独立不同个体的无序集合。示例如下:

    animals = {'cat', 'dog'}
    print 'cat' in animals   # Check if an element is in a set; prints "True"
    print 'fish' in animals  # prints "False"
    animals.add('fish')      # Add an element to a set
    print 'fish' in animals  # Prints "True"
    print len(animals)       # Number of elements in a set; prints "3"
    animals.add('cat')       # Adding an element that is already in the set does nothing
    print len(animals)       # Prints "3"
    animals.remove('cat')    # Remove an element from a set
    print len(animals)       # Prints "2"

和前面一样,要知道更详细的,查看文档__

循环Loops:在集合中循环的语法和在列表中一样,但是集合是无序的,所以你在访问集合的元素的时候,不能做关于顺序的假设。

    animals = {'cat', 'dog', 'fish'}
    for idx, animal in enumerate(animals):
        print '#%d: %s' % (idx + 1, animal)
    # Prints "#1: fish", "#2: dog", "#3: cat"

集合推导****Set comprehensions:和字典推导一样,可以很方便地构建集合:

    from math import sqrt
    nums = {int(sqrt(x)) for x in range(30)}
    print nums  # Prints "set([0, 1, 2, 3, 4, 5])"

元组Tuples

元组是一个值的有序列表(不可改变)。从很多方面来说,元组和列表都很相似。和列表最重要的不同在于,元组可以在字典中用作键,还可以作为集合的元素,而列表不行。例子如下:

    d = {(x, x + 1): x for x in range(10)}  # Create a dictionary with tuple keys
    print d
    t = (5, 6)       # Create a tuple
    print type(t)    # Prints ""
    print d[t]       # Prints "5"
    print d[(1, 2)]  # Prints "1"

文档__有更多元组的信息。

函数Functions

Python函数使用def来定义函数:

    def sign(x):
        if x > 0:
            return 'positive'
        elif x < 0:
            return 'negative'
        else:
            return 'zero'
    
    for x in [-1, 0, 1]:
        print sign(x)
    # Prints "negative", "zero", "positive"

我们常常使用可选参数来定义函数:

    def hello(name, loud=False):
        if loud:
            print 'HELLO, %s' % name.upper()
        else:
            print 'Hello, %s!' % name
    
    hello('Bob') # Prints "Hello, Bob"
    hello('Fred', loud=True)  # Prints "HELLO, FRED!"

函数还有很多内容,可以查看文档__

类Classes

Python对于类的定义是简单直接的:

    class Greeter(object):
    
        # Constructor
        def __init__(self, name):
            self.name = name  # Create an instance variable
    
        # Instance method
        def greet(self, loud=False):
            if loud:
                print 'HELLO, %s!' % self.name.upper()
            else:
                print 'Hello, %s' % self.name
    
    g = Greeter('Fred')  # Construct an instance of the Greeter class
    g.greet()            # Call an instance method; prints "Hello, Fred"
    g.greet(loud=True)   # Call an instance method; prints "HELLO, FRED!"

更多类的信息请查阅文档__

Numpy是Python中用于科学计算的核心库。它提供了高性能的多维数组对象,以及相关工具。

数组Arrays

一个numpy数组是一个由不同数值组成的网格。网格中的数据都是同一种数据类型,可以通过非负整型数的元组来访问。维度的数量被称为数组的阶,数组的大小是一个由整型数构成的元组,可以描述数组不同维度上的大小。

我们可以从列表创建数组,然后利用方括号访问其中的元素:

    import numpy as np
    
    a = np.array([1, 2, 3])  # Create a rank 1 array
    print type(a)            # Prints ""
    print a.shape            # Prints "(3,)"
    print a[0], a[1], a[2]   # Prints "1 2 3"
    a[0] = 5                 # Change an element of the array
    print a                  # Prints "[5, 2, 3]"
    
    b = np.array([[1,2,3],[4,5,6]])   # Create a rank 2 array
    print b                           # 显示一下矩阵b
    print b.shape                     # Prints "(2, 3)"
    print b[0, 0], b[0, 1], b[1, 0]   # Prints "1 2 4"

Numpy还提供了很多其他创建数组的方法:

    import numpy as np
    
    a = np.zeros((2,2))  # Create an array of all zeros
    print a              # Prints "[[ 0.  0.]
                         #          [ 0.  0.]]"
    
    b = np.ones((1,2))   # Create an array of all ones
    print b              # Prints "[[ 1.  1.]]"
    
    c = np.full((2,2), 7) # Create a constant array
    print c               # Prints "[[ 7.  7.]
                          #          [ 7.  7.]]"
    
    d = np.eye(2)        # Create a 2x2 identity matrix
    print d              # Prints "[[ 1.  0.]
                         #          [ 0.  1.]]"
    
    e = np.random.random((2,2)) # Create an array filled with random values
    print e                     # Might print "[[ 0.91940167  0.08143941]
                                #               [ 0.68744134  0.87236687]]"

其他数组相关方法,请查看文档__

访问数组

Numpy提供了多种访问数组的方法。

切片:和Python列表类似,numpy数组可以使用切片语法。因为数组可以是多维的,所以你必须为每个维度指定好切片。

    import numpy as np
    
    # Create the following rank 2 array with shape (3, 4)
    # [[ 1  2  3  4]
    #  [ 5  6  7  8]
    #  [ 9 10 11 12]]
    a = np.array([[1,2,3,4], [5,6,7,8], [9,10,11,12]])
    
    # Use slicing to pull out the subarray consisting of the first 2 rows
    # and columns 1 and 2; b is the following array of shape (2, 2):
    # [[2 3]
    #  [6 7]]
    b = a[:2, 1:3]
    
    # A slice of an array is a view into the same data, so modifying it
    # will modify the original array.
    print a[0, 1]   # Prints "2"
    b[0, 0] = 77    # b[0, 0] is the same piece of data as a[0, 1]
    print a[0, 1]   # Prints "77"

你可以同时使用整型和切片语法来访问数组。但是,这样做会产生一个比原数组低阶的新数组。需要注意的是,这里和MATLAB中的情况是不同的:

    import numpy as np
    
    # Create the following rank 2 array with shape (3, 4)
    # [[ 1  2  3  4]
    #  [ 5  6  7  8]
    #  [ 9 10 11 12]]
    a = np.array([[1,2,3,4], [5,6,7,8], [9,10,11,12]])
    
    # Two ways of accessing the data in the middle row of the array.
    # Mixing integer indexing with slices yields an array of lower rank,
    # while using only slices yields an array of the same rank as the
    # original array:
    row_r1 = a[1, :]    # Rank 1 view of the second row of a  
    row_r2 = a[1:2, :]  # Rank 2 view of the second row of a
    print row_r1, row_r1.shape  # Prints "[5 6 7 8] (4,)"
    print row_r2, row_r2.shape  # Prints "[[5 6 7 8]] (1, 4)"
    
    # We can make the same distinction when accessing columns of an array:
    col_r1 = a[:, 1]
    col_r2 = a[:, 1:2]
    print col_r1, col_r1.shape  # Prints "[ 2  6 10] (3,)"
    print col_r2, col_r2.shape  # Prints "[[ 2]
                                #          [ 6]
                                #          [10]] (3, 1)"

整型数组访问:当我们使用切片语法访问数组时,得到的总是原数组的一个子集。整型数组访问允许我们利用其它数组的数据构建一个新的数组:

    import numpy as np
    
    a = np.array([[1,2], [3, 4], [5, 6]])
    
    # An example of integer array indexing.
    # The returned array will have shape (3,) and 
    print a[[0, 1, 2], [0, 1, 0]]  # Prints "[1 4 5]"
    
    # The above example of integer array indexing is equivalent to this:
    print np.array([a[0, 0], a[1, 1], a[2, 0]])  # Prints "[1 4 5]"
    
    # When using integer array indexing, you can reuse the same
    # element from the source array:
    print a[[0, 0], [1, 1]]  # Prints "[2 2]"
    
    # Equivalent to the previous integer array indexing example
    print np.array([a[0, 1], a[0, 1]])  # Prints "[2 2]"

整型数组访问语法还有个有用的技巧,可以用来选择或者更改矩阵中每行中的一个元素:

    import numpy as np
    
    # Create a new array from which we will select elements
    a = np.array([[1,2,3], [4,5,6], [7,8,9], [10, 11, 12]])
    
    print a  # prints "array([[ 1,  2,  3],
             #                [ 4,  5,  6],
             #                [ 7,  8,  9],
             #                [10, 11, 12]])"
    
    # Create an array of indices
    b = np.array([0, 2, 0, 1])
    
    # Select one element from each row of a using the indices in b
    print a[np.arange(4), b]  # Prints "[ 1  6  7 11]"
    
    # Mutate one element from each row of a using the indices in b
    a[np.arange(4), b] += 10
    
    print a  # prints "array([[11,  2,  3],
             #                [ 4,  5, 16],
             #                [17,  8,  9],
             #                [10, 21, 12]])

布尔型数组访问:布尔型数组访问可以让你选择数组中任意元素。通常,这种访问方式用于选取数组中满足某些条件的元素,举例如下:

    import numpy as np
    
    a = np.array([[1,2], [3, 4], [5, 6]])
    
    bool_idx = (a > 2)  # Find the elements of a that are bigger than 2;
                        # this returns a numpy array of Booleans of the same
                        # shape as a, where each slot of bool_idx tells
                        # whether that element of a is > 2.
    
    print bool_idx      # Prints "[[False False]
                        #          [ True  True]
                        #          [ True  True]]"
    
    # We use boolean array indexing to construct a rank 1 array
    # consisting of the elements of a corresponding to the True values
    # of bool_idx
    print a[bool_idx]  # Prints "[3 4 5 6]"
    
    # We can do all of the above in a single concise statement:
    print a[a > 2]     # Prints "[3 4 5 6]"

为了教程的简介,有很多数组访问的细节我们没有详细说明,可以查看文档__

数据类型

每个Numpy数组都是数据类型相同的元素组成的网格。Numpy提供了很多的数据类型用于创建数组。当你创建数组的时候,Numpy会尝试猜测数组的数据类型,你也可以通过参数直接指定数据类型,例子如下:

    import numpy as np
    
    x = np.array([1, 2])  # Let numpy choose the datatype
    print x.dtype         # Prints "int64"
    
    x = np.array([1.0, 2.0])  # Let numpy choose the datatype
    print x.dtype             # Prints "float64"
    
    x = np.array([1, 2], dtype=np.int64)  # Force a particular datatype
    print x.dtype                         # Prints "int64"

更多细节查看文档__

数组计算

基本数学计算函数会对数组中元素逐个进行计算,既可以利用操作符重载,也可以使用函数方式:

    import numpy as np
    
    x = np.array([[1,2],[3,4]], dtype=np.float64)
    y = np.array([[5,6],[7,8]], dtype=np.float64)
    
    # Elementwise sum; both produce the array
    # [[ 6.0  8.0]
    #  [10.0 12.0]]
    print x + y
    print np.add(x, y)
    
    # Elementwise difference; both produce the array
    # [[-4.0 -4.0]
    #  [-4.0 -4.0]]
    print x - y
    print np.subtract(x, y)
    
    # Elementwise product; both produce the array
    # [[ 5.0 12.0]
    #  [21.0 32.0]]
    print x * y
    print np.multiply(x, y)
    
    # Elementwise division; both produce the array
    # [[ 0.2         0.33333333]
    #  [ 0.42857143  0.5       ]]
    print x / y
    print np.divide(x, y)
    
    # Elementwise square root; produces the array
    # [[ 1.          1.41421356]
    #  [ 1.73205081  2.        ]]
    print np.sqrt(x)

和MATLAB不同,*是元素逐个相乘,而不是矩阵乘法。在Numpy中使用dot来进行矩阵乘法:

    import numpy as np
    
    x = np.array([[1,2],[3,4]])
    y = np.array([[5,6],[7,8]])
    
    v = np.array([9,10])
    w = np.array([11, 12])
    
    # Inner product of vectors; both produce 219
    print v.dot(w)
    print np.dot(v, w)
    
    # Matrix / vector product; both produce the rank 1 array [29 67]
    print x.dot(v)
    print np.dot(x, v)
    
    # Matrix / matrix product; both produce the rank 2 array
    # [[19 22]
    #  [43 50]]
    print x.dot(y)
    print np.dot(x, y)

Numpy提供了很多计算数组的函数,其中最常用的一个是sum

    import numpy as np
    
    x = np.array([[1,2],[3,4]])
    
    print np.sum(x)  # Compute sum of all elements; prints "10"
    print np.sum(x, axis=0)  # Compute sum of each column; prints "[4 6]"
    print np.sum(x, axis=1)  # Compute sum of each row; prints "[3 7]"

想要了解更多函数,可以查看文档__

除了计算,我们还常常改变数组或者操作其中的元素。其中将矩阵转置是常用的一个,在Numpy中,使用T来转置矩阵:

    import numpy as np
    
    x = np.array([[1,2], [3,4]])
    print x    # Prints "[[1 2]
               #          [3 4]]"
    print x.T  # Prints "[[1 3]
               #          [2 4]]"
    
    # Note that taking the transpose of a rank 1 array does nothing:
    v = np.array([1,2,3])
    print v    # Prints "[1 2 3]"
    print v.T  # Prints "[1 2 3]"

Numpy还提供了更多操作数组的方法,请查看文档__

广播Broadcasting

广播是一种强有力的机制,它让Numpy可以让不同大小的矩阵在一起进行数学计算。我们常常会有一个小的矩阵和一个大的矩阵,然后我们会需要用小的矩阵对大的矩阵做一些计算。

举个例子,如果我们想要把一个向量加到矩阵的每一行,我们可以这样做:

    import numpy as np
    
    # We will add the vector v to each row of the matrix x,
    # storing the result in the matrix y
    x = np.array([[1,2,3], [4,5,6], [7,8,9], [10, 11, 12]])
    v = np.array([1, 0, 1])
    y = np.empty_like(x)   # Create an empty matrix with the same shape as x
    
    # Add the vector v to each row of the matrix x with an explicit loop
    for i in range(4):
        y[i, :] = x[i, :] + v
    
    # Now y is the following
    # [[ 2  2  4]
    #  [ 5  5  7]
    #  [ 8  8 10]
    #  [11 11 13]]
    print y

这样是行得通的,但是当x矩阵非常大,利用循环来计算就会变得很慢很慢。我们可以换一种思路:

    import numpy as np
    
    # We will add the vector v to each row of the matrix x,
    # storing the result in the matrix y
    x = np.array([[1,2,3], [4,5,6], [7,8,9], [10, 11, 12]])
    v = np.array([1, 0, 1])
    vv = np.tile(v, (4, 1))  # Stack 4 copies of v on top of each other
    print vv                 # Prints "[[1 0 1]
                             #          [1 0 1]
                             #          [1 0 1]
                             #          [1 0 1]]"
    y = x + vv  # Add x and vv elementwise
    print y  # Prints "[[ 2  2  4
             #          [ 5  5  7]
             #          [ 8  8 10]
             #          [11 11 13]]"

Numpy广播机制可以让我们不用创建vv,就能直接运算,看看下面例子:

    import numpy as np
    
    # We will add the vector v to each row of the matrix x,
    # storing the result in the matrix y
    x = np.array([[1,2,3], [4,5,6], [7,8,9], [10, 11, 12]])
    v = np.array([1, 0, 1])
    y = x + v  # Add v to each row of x using broadcasting
    print y  # Prints "[[ 2  2  4]
             #          [ 5  5  7]
             #          [ 8  8 10]
             #          [11 11 13]]"

对两个数组使用广播机制要遵守下列规则:

  1. 如果数组的秩不同,使用1来将秩较小的数组进行扩展,直到两个数组的尺寸的长度都一样。
  2. 如果两个数组在某个维度上的长度是一样的,或者其中一个数组在该维度上长度为1,那么我们就说这两个数组在该维度上是相容的。
  3. 如果两个数组在所有维度上都是相容的,他们就能使用广播。
  4. 如果两个输入数组的尺寸不同,那么注意其中较大的那个尺寸。因为广播之后,两个数组的尺寸将和那个较大的尺寸一样。
  5. 在任何一个维度上,如果一个数组的长度为1,另一个数组长度大于1,那么在该维度上,就好像是对第一个数组进行了复制。

如果上述解释看不明白,可以读一读文档__和这个解释__译者注:强烈推荐阅读文档中的例子。

支持广播机制的函数是全局函数。哪些是全局函数可以在文档__中查找。

下面是一些广播机制的使用:

    import numpy as np
    
    # Compute outer product of vectors
    v = np.array([1,2,3])  # v has shape (3,)
    w = np.array([4,5])    # w has shape (2,)
    # To compute an outer product, we first reshape v to be a column
    # vector of shape (3, 1); we can then broadcast it against w to yield
    # an output of shape (3, 2), which is the outer product of v and w:
    # [[ 4  5]
    #  [ 8 10]
    #  [12 15]]
    print np.reshape(v, (3, 1)) * w
    
    # Add a vector to each row of a matrix
    x = np.array([[1,2,3], [4,5,6]])
    # x has shape (2, 3) and v has shape (3,) so they broadcast to (2, 3),
    # giving the following matrix:
    # [[2 4 6]
    #  [5 7 9]]
    print x + v
    
    # Add a vector to each column of a matrix
    # x has shape (2, 3) and w has shape (2,).
    # If we transpose x then it has shape (3, 2) and can be broadcast
    # against w to yield a result of shape (3, 2); transposing this result
    # yields the final result of shape (2, 3) which is the matrix x with
    # the vector w added to each column. Gives the following matrix:
    # [[ 5  6  7]
    #  [ 9 10 11]]
    print (x.T + w).T
    
    # Another solution is to reshape w to be a row vector of shape (2, 1);
    # we can then broadcast it directly against x to produce the same
    # output.
    print x + np.reshape(w, (2, 1))
    
    # Multiply a matrix by a constant:
    # x has shape (2, 3). Numpy treats scalars as arrays of shape ();
    # these can be broadcast together to shape (2, 3), producing the
    # following array:
    # [[ 2  4  6]
    #  [ 8 10 12]]
    print x * 2

广播机制能够让你的代码更简洁更迅速,能够用的时候请尽量使用!

Numpy文档

这篇教程涉及了你需要了解的numpy中的一些重要内容,但是numpy远不止如此。可以查阅numpy文献__来学习更多。

Numpy提供了高性能的多维数组,以及计算和操作数组的基本工具。SciPy__基于Numpy,提供了大量的计算和操作数组的函数,这些函数对于不同类型的科学和工程计算非常有用。

熟悉SciPy的最好方法就是阅读文档__。我们会强调对于本课程有用的部分。

图像操作

SciPy提供了一些操作图像的基本函数。比如,它提供了将图像从硬盘读入到数组的函数,也提供了将数组中数据写入的硬盘成为图像的函数。下面是一个简单的例子:

    from scipy.misc import imread, imsave, imresize
    
    # Read an JPEG image into a numpy array
    img = imread('assets/cat.jpg')
    print img.dtype, img.shape  # Prints "uint8 (400, 248, 3)"
    
    # We can tint the image by scaling each of the color channels
    # by a different scalar constant. The image has shape (400, 248, 3);
    # we multiply it by the array [1, 0.95, 0.9] of shape (3,);
    # numpy broadcasting means that this leaves the red channel unchanged,
    # and multiplies the green and blue channels by 0.95 and 0.9
    # respectively.
    img_tinted = img * [1, 0.95, 0.9]
    
    # Resize the tinted image to be 300 by 300 pixels.
    img_tinted = imresize(img_tinted, (300, 300))
    
    # Write the tinted image back to disk
    imsave('assets/cat_tinted.jpg', img_tinted)

译者注:如果运行这段代码出现类似ImportError: cannot import name imread的报错,那么请利用pip进行Pillow的下载,可以解决问题。命令:pip install Pillow。

—————————————————————————————————————————

左边是原始图片,右边是变色和变形的图片。

—————————————————————————————————————————

MATLAB文件

函数scipy.io.loadmatscipy.io.savemat能够让你读和写MATLAB文件。具体请查看文档__

点之间的距离

SciPy定义了一些有用的函数,可以计算集合中点之间的距离。

函数scipy.spatial.distance.pdist能够计算集合中所有两点之间的距离:

    import numpy as np
    from scipy.spatial.distance import pdist, squareform
    
    # Create the following array where each row is a point in 2D space:
    # [[0 1]
    #  [1 0]
    #  [2 0]]
    x = np.array([[0, 1], [1, 0], [2, 0]])
    print x
    
    # Compute the Euclidean distance between all rows of x.
    # d[i, j] is the Euclidean distance between x[i, :] and x[j, :],
    # and d is the following array:
    # [[ 0.          1.41421356  2.23606798]
    #  [ 1.41421356  0.          1.        ]
    #  [ 2.23606798  1.          0.        ]]
    d = squareform(pdist(x, 'euclidean'))
    print d

具体细节请阅读文档__

函数scipy.spatial.distance.cdist可以计算不同集合中点的距离,具体请查看文档__

Matplotlib

Matplotlib是一个作图库。这里简要介绍matplotlib.pyplot模块,功能和MATLAB的作图功能类似。

绘图

matplotlib库中最重要的函数是Plot。该函数允许你做出2D图形,如下:

    import numpy as np
    import matplotlib.pyplot as plt
    
    # Compute the x and y coordinates for points on a sine curve
    x = np.arange(0, 3 * np.pi, 0.1)
    y = np.sin(x)
    
    # Plot the points using matplotlib
    plt.plot(x, y)
    plt.show()  # You must call plt.show() to make graphics appear.

运行上面代码会产生下面的作图:

—————————————————————————————————————————

—————————————————————————————————————————

只需要少量工作,就可以一次画不同的线,加上标签,坐标轴标志等。

    import numpy as np
    import matplotlib.pyplot as plt
    
    # Compute the x and y coordinates for points on sine and cosine curves
    x = np.arange(0, 3 * np.pi, 0.1)
    y_sin = np.sin(x)
    y_cos = np.cos(x)
    
    # Plot the points using matplotlib
    plt.plot(x, y_sin)
    plt.plot(x, y_cos)
    plt.xlabel('x axis label')
    plt.ylabel('y axis label')
    plt.title('Sine and Cosine')
    plt.legend(['Sine', 'Cosine'])
    plt.show()

—————————————————————————————————————————

—————————————————————————————————————————

可以在文档__中阅读更多关于plot的内容。

绘制多个图像

可以使用subplot函数来在一幅图中画不同的东西:

    import numpy as np
    import matplotlib.pyplot as plt
    
    # Compute the x and y coordinates for points on sine and cosine curves
    x = np.arange(0, 3 * np.pi, 0.1)
    y_sin = np.sin(x)
    y_cos = np.cos(x)
    
    # Set up a subplot grid that has height 2 and width 1,
    # and set the first such subplot as active.
    plt.subplot(2, 1, 1)
    
    # Make the first plot
    plt.plot(x, y_sin)
    plt.title('Sine')
    
    # Set the second subplot as active, and make the second plot.
    plt.subplot(2, 1, 2)
    plt.plot(x, y_cos)
    plt.title('Cosine')
    
    # Show the figure.
    plt.show()

—————————————————————————————————————————

—————————————————————————————————————————

关于subplot的更多细节,可以阅读文档__

图像

你可以使用imshow函数来显示图像,如下所示:

    import numpy as np
    from scipy.misc import imread, imresize
    import matplotlib.pyplot as plt
    
    img = imread('assets/cat.jpg')
    img_tinted = img * [1, 0.95, 0.9]
    
    # Show the original image
    plt.subplot(1, 2, 1)
    plt.imshow(img)
    
    # Show the tinted image
    plt.subplot(1, 2, 2)
    
    # A slight gotcha with imshow is that it might give strange results
    # if presented with data that is not uint8. To work around this, we
    # explicitly cast the image to uint8 before displaying it.
    plt.imshow(np.uint8(img_tinted))
    plt.show()

—————————————————————————————————————————

—————————————————————————————————————————

本教程翻译完毕。

译者反馈

1.个人水平有限,翻译中存在的任何问题请大家在评论中或私信我指正,我会认真修改或给出回馈;

2.第一次撰写知乎专栏,没有发现文章内的锚点功能。如有,请大家指点;

3.对于Container的翻译,采取"容器"。亦有知友指出可用"复合数据类型",未决,请大家点评;

4.对于广播机制中数组的rank,现在翻译为"秩"。亦有知友指出可用"尺寸",未决,请大家点评;

5.有知友指出文章过长。希望以后能将一篇教程拆分一下,方便大家碎片化阅读。经我统计,目前希望拆分的知友较多,那么下篇翻译将拆分为上下篇。