forked from faif/python-patterns
-
Notifications
You must be signed in to change notification settings - Fork 0
/
flyweight.py
140 lines (107 loc) · 3.85 KB
/
flyweight.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
*What is this pattern about?
This pattern aims to minimise the number of objects that are needed by
a program at run-time. A Flyweight is an object shared by multiple
contexts, and is indistinguishable from an object that is not shared.
The state of a Flyweight should not be affected by it's context, this
is known as its intrinsic state. The decoupling of the objects state
from the object's context, allows the Flyweight to be shared.
*What does this example do?
The example below sets-up an 'object pool' which stores initialised
objects. When a 'Card' is created it first checks to see if it already
exists instead of creating a new one. This aims to reduce the number of
objects initialised by the program.
*References:
http://codesnipers.com/?q=python-flyweights
*TL;DR80
Minimizes memory usage by sharing data with other similar objects.
"""
import weakref
class FlyweightMeta(type):
def __new__(mcs, name, parents, dct):
"""
Set up object pool
:param name: class name
:param parents: class parents
:param dct: dict: includes class attributes, class methods,
static methods, etc
:return: new class
"""
dct['pool'] = weakref.WeakValueDictionary()
return super(FlyweightMeta, mcs).__new__(mcs, name, parents, dct)
@staticmethod
def _serialize_params(cls, *args, **kwargs):
"""
Serialize input parameters to a key.
Simple implementation is just to serialize it as a string
"""
args_list = list(map(str, args))
args_list.extend([str(kwargs), cls.__name__])
key = ''.join(args_list)
return key
def __call__(cls, *args, **kwargs):
key = FlyweightMeta._serialize_params(cls, *args, **kwargs)
pool = getattr(cls, 'pool', {})
instance = pool.get(key)
if instance is None:
instance = super(FlyweightMeta, cls).__call__(*args, **kwargs)
pool[key] = instance
return instance
class Card(object):
"""The object pool. Has builtin reference counting"""
_CardPool = weakref.WeakValueDictionary()
"""Flyweight implementation. If the object exists in the
pool just return it (instead of creating a new one)"""
def __new__(cls, value, suit):
obj = Card._CardPool.get(value + suit)
if not obj:
obj = object.__new__(cls)
Card._CardPool[value + suit] = obj
obj.value, obj.suit = value, suit
return obj
# def __init__(self, value, suit):
# self.value, self.suit = value, suit
def __repr__(self):
return "<Card: %s%s>" % (self.value, self.suit)
def with_metaclass(meta, *bases):
""" Provide python cross-version metaclass compatibility. """
return meta("NewBase", bases, {})
class Card2(with_metaclass(FlyweightMeta)):
def __init__(self, *args, **kwargs):
# print('Init {}: {}'.format(self.__class__, (args, kwargs)))
pass
if __name__ == '__main__':
# comment __new__ and uncomment __init__ to see the difference
c1 = Card('9', 'h')
c2 = Card('9', 'h')
print(c1, c2)
print(c1 == c2, c1 is c2)
print(id(c1), id(c2))
c1.temp = None
c3 = Card('9', 'h')
print(hasattr(c3, 'temp'))
c1 = c2 = c3 = None
c3 = Card('9', 'h')
print(hasattr(c3, 'temp'))
# Tests with metaclass
instances_pool = getattr(Card2, 'pool')
cm1 = Card2('10', 'h', a=1)
cm2 = Card2('10', 'h', a=1)
cm3 = Card2('10', 'h', a=2)
assert (cm1 == cm2) and ( cm1 != cm3)
assert (cm1 is cm2) and ( cm1 is not cm3)
assert len(instances_pool) == 2
del cm1
assert len(instances_pool) == 2
del cm2
assert len(instances_pool) == 1
del cm3
assert len(instances_pool) == 0
### OUTPUT ###
# (<Card: 9h>, <Card: 9h>)
# (True, True)
# (31903856, 31903856)
# True
# False