forked from keras-team/keras-io
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathguides_master.py
82 lines (80 loc) · 2.39 KB
/
guides_master.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
GUIDES_MASTER = {
'path': 'guides/',
'title': 'Developer guides',
'toc': True,
'children': [
{
'path': 'functional_api',
'title': 'The Functional API',
},
{
'path': 'sequential_model',
'title': 'The Sequential model',
},
{
'path': 'making_new_layers_and_models_via_subclassing',
'title': 'Making new Layers & Models via subclassing',
},
{
'path': 'training_with_built_in_methods',
'title': 'Training & evaluation with the built-in methods',
},
{
'path': 'customizing_what_happens_in_fit',
'title': 'Customizing what happens in `fit()`',
},
{
'path': 'writing_a_training_loop_from_scratch',
'title': 'Writing a training loop from scratch',
},
{
'path': 'serialization_and_saving',
'title': 'Serialization & saving',
},
{
'path': 'writing_your_own_callbacks',
'title': 'Writing your own Callbacks',
},
# {
# 'path': 'writing_your_own_metrics',
# 'title': 'Writing your own Metrics',
# },
# {
# 'path': 'writing_your_own_losses',
# 'title': 'Writing your own Losses',
# },
{
'path': 'preprocessing_layers',
'title': 'Working with preprocessing Layers',
},
{
'path': 'working_with_rnns',
'title': 'Working with recurrent neural networks',
},
{
'path': 'understanding_masking_and_padding',
'title': 'Understanding masking & padding',
},
{
'path': 'distributed_training',
'title': 'Multi-GPU & distributed training',
},
# {
# 'path': 'tpu_training',
# 'title': 'Training Keras models on TPU',
# },
{
'path': 'transfer_learning',
'title': 'Transfer learning & fine-tuning',
},
# {
# 'path': 'hyperparameter_optimization',
# 'title': 'Hyperparameter optimization',
# },
{
'path': 'training_keras_models_on_cloud',
'title': 'Training Keras models with TensorFlow Cloud',
},
# TODO: mixed precision
]
}