-
Notifications
You must be signed in to change notification settings - Fork 27
/
model_composition.py
287 lines (231 loc) · 10.2 KB
/
model_composition.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
import gc
import os
import einops
import torch
import argparse
import numpy as np
import pandas as pd
from utils import timestamp
from scipy.stats import spearmanr
from save_activations import load_activation_probing_dataset
from feature_datasets.common import load_entity_data
from probe_experiment import get_target_values
from transformers import AutoTokenizer, AutoModelForCausalLM
def get_top_neurons(learned_probes, model, k=50, W_in=True):
if W_in:
W_norm = (model.W_in / model.W_in.norm(dim=1,
keepdim=True)).swapaxes(1, 2)
else:
W_norm = (model.W_out / model.W_out.norm(dim=-1, keepdim=True))
n_layers, d_mlp, d_model = W_norm.shape
W_comp = einops.einsum(W_norm, learned_probes.float(),
'l1 m d, l2 d-> l2 l1 m')
top_neurons = W_comp.flatten().abs().argsort()
top_acts, top_layers, top_neurons = np.unravel_index(
top_neurons[-k:], (learned_probes.shape[0], n_layers, d_mlp))
top_cos = W_comp[top_acts, top_layers, top_neurons]
return top_layers, top_neurons, top_cos
def make_correlation_df(model, features, entity_activations, top_layers, top_neurons, W_in=True):
neuron_corr = {}
for l, n in zip(top_layers, top_neurons):
if W_in:
neuron_probe = model.W_in[l, :, n]
else:
neuron_probe = model.W_out[l, n, :]
for activation_layer, activations in entity_activations.items():
neuron_probe_projection = activations @ neuron_probe
corr = spearmanr(neuron_probe_projection, features).correlation
neuron_corr[(l, n, activation_layer)] = corr
corr_df = pd.DataFrame({'corr': pd.Series(neuron_corr)})
corr_df.index.names = ['neuron_layer', 'neuron', 'activation_layer']
corr_df = corr_df.reset_index()
return corr_df
def place_neuron_correlations(model, probe_result, place_df, entity_activations, top_k=50, start_layer=15):
n_layers = model.config.num_hidden_layers
lon_probes = torch.stack([
torch.tensor(probe_result['probe_directions'][layer][:, 1])
for layer in range(start_layer, n_layers)
])
lon_probes = lon_probes / lon_probes.norm(dim=1, keepdim=True)
lat_probes = torch.stack([
torch.tensor(probe_result['probe_directions'][layer][:, 1])
for layer in range(start_layer, n_layers)
])
lat_probes = lat_probes / lat_probes.norm(dim=1, keepdim=True)
top_neuron_dict = {
('lon', 'in'): get_top_neurons(lon_probes, model, k=top_k, W_in=True),
('lon', 'out'): get_top_neurons(lon_probes, model, k=top_k, W_in=False),
('lat', 'in'): get_top_neurons(lat_probes, model, k=top_k, W_in=True),
('lat', 'out'): get_top_neurons(lat_probes, model, k=top_k, W_in=False),
}
corr_dfs = []
for (feature, neuron_weight), (top_layers, top_neurons, top_cos) in top_neuron_dict.items():
feature_col = 'latitude' if feature == 'lat' else 'longitude'
use_Win = neuron_weight == 'in'
feature_values = place_df[feature_col].values
corr_df = make_correlation_df(
model, feature_values, entity_activations, top_layers, top_neurons, W_in=use_Win)
corr_df['probe_cos'] = top_cos
corr_df['feature'] = feature
corr_df['neuron_weight'] = neuron_weight
corr_dfs.append(corr_df)
return pd.concat(corr_dfs)
def RMSnorm(x, eps=1e-6):
mean_sq = (x ** 2).mean(dim=1, keepdim=True)
x = x / torch.sqrt(mean_sq + eps)
return x
def pearson_correlation(matrix, target):
n, d = matrix.size()
target = target.view(-1, 1) # reshape target to a column vector
# Calculate the sums
sum_x = matrix.sum(dim=0)
sum_y = target.sum()
sum_xy = (matrix * target).sum(dim=0)
sum_xx = (matrix * matrix).sum(dim=0)
sum_yy = (target * target).sum()
# Compute the Pearson correlation for each column
numerator = n * sum_xy - sum_x * sum_y
denominator = torch.sqrt((n * sum_xx - sum_x ** 2)
* (n * sum_yy - sum_y ** 2))
correlation = numerator / denominator
return correlation
def spearman_correlation(matrix, target):
n, d = matrix.size()
target = target.view(-1, 1) # reshape target to a column vector
# Chunk neurons to reduce memory overhead
chunk_size = 1024
num_rows = matrix.size(0)
matrix_ranks = torch.zeros_like(
matrix, dtype=torch.float, device=matrix.device)
for i in range(0, num_rows, chunk_size):
chunk = matrix[:, i:i + chunk_size]
rank_chunk = chunk.argsort(dim=0).argsort(dim=0).float() + 1.0
matrix_ranks[:, i:i + chunk_size] = rank_chunk
target_ranks = target.argsort(dim=0).argsort(
dim=0).float() + 1.0 # convert to 1-indexed ranks
# Calculate the sums
sum_x = matrix_ranks.sum(dim=0)
sum_y = target_ranks.sum()
sum_xy = (matrix_ranks * target_ranks).sum(dim=0)
sum_xx = (matrix_ranks * matrix_ranks).sum(dim=0)
sum_yy = (target_ranks * target_ranks).sum()
# Compute the Spearman correlation for each column
numerator = n * sum_xy - sum_x * sum_y
denominator = torch.sqrt((n * sum_xx - sum_x ** 2)
* (n * sum_yy - sum_y ** 2))
correlation = numerator / denominator
return correlation
def neuron_full_correlations(target_values, entity_activations, model, weight='W_in', use_spearman=True):
target = torch.tensor(target_values).cuda()
corrs = []
for layer in range(model.config.num_hidden_layers - 1):
acts = entity_activations[layer].cuda()
acts = RMSnorm(acts)
if weight == 'W_in':
weights = model.model.layers[layer+1].mlp.up_proj.weight
elif weight == 'W_gate':
weights = model.model.layers[layer+1].mlp.gate_proj.weight
elif weight == 'W_out':
weights = model.model.layers[layer].mlp.down_proj.weight.T
else:
raise ValueError(f'Invalid weight type: {weight}')
weights = weights.cuda().to(torch.float32)
neuron_acts = weights @ acts.T
del acts
del weights
gc.collect()
torch.cuda.empty_cache()
if use_spearman:
corr = spearman_correlation(neuron_acts.T, target).detach().cpu()
else:
corr = pearson_correlation(neuron_acts.T, target).detach().cpu()
corrs.append(corr)
full_corr = torch.stack(corrs, dim=0)
return full_corr
def place_all_neuron_correlations(place_df, entity_activations, model, top_k=50):
lat = place_df.latitude.values
lon = place_df.longitude.values
targets = {
'lat': lat,
'lon': lon,
}
if 'country' in place_df.columns:
targets['abs_lat'] = np.abs(lat)
targets['abs_lon'] = np.abs(lon)
weights = ['W_in', 'W_gate', 'W_out']
neuron_dfs = []
for target_name, target_values in targets.items():
for weight in weights:
full_corr = neuron_full_correlations(
target_values, entity_activations, model, weight=weight)
top_ixs = full_corr.flatten().abs().argsort()[-top_k:]
top_layers, top_neurons = np.unravel_index(
top_ixs, full_corr.shape)
df = pd.DataFrame({
'feature': [target_name for _ in range(top_k)],
'weight': [weight for _ in range(top_k)],
# +1 because we skip the first layer
'layer': top_layers + (1 if weight != 'W_out' else 0),
'neuron': top_neurons,
'corr': full_corr[top_layers, top_neurons],
'abs_corr': full_corr[top_layers, top_neurons].abs()
})
neuron_dfs.append(df)
return pd.concat(neuron_dfs)
def time_neuron_correlations(target, entity_activations, model, top_k=50):
weights = ['W_in', 'W_gate', 'W_out']
neuron_dfs = []
for weight in weights:
full_corr = neuron_full_correlations(
target, entity_activations, model, weight=weight)
top_ixs = full_corr.flatten().abs().argsort()[-top_k:]
top_layers, top_neurons = np.unravel_index(
top_ixs, full_corr.shape)
df = pd.DataFrame({
'feature': ['time' for _ in range(top_k)],
'weight': [weight for _ in range(top_k)],
# +1 because we skip the first layer
'layer': top_layers + (1 if weight != 'W_out' else 0),
'neuron': top_neurons,
'corr': full_corr[top_layers, top_neurons],
'abs_corr': full_corr[top_layers, top_neurons].abs()
})
neuron_dfs.append(df)
return pd.concat(neuron_dfs)
if __name__ == '__main__':
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument(
'--model', default='Llama-2-7b-hf',
help='Name of model from TransformerLens')
parser.add_argument(
'--entity_type',
help='Name of feature collection (should be dir under processed_datasets/)')
parser.add_argument(
'--feature_name', type=str, default='coords',
help='Name of feature to probe, must be in FEATURE_PROMPT_MAPPINGS')
parser.add_argument(
'--prompt_name', type=str,
help='Name of prompt to use for probing, must key in <ENTITY>_PROMPTS')
args = parser.parse_args()
torch.set_grad_enabled(False)
model = AutoModelForCausalLM.from_pretrained(
f"meta-llama/{args.model}")
n_layers = model.config.num_hidden_layers
entity_activations = {l: load_activation_probing_dataset(
args.model, args.entity_type, args.prompt_name, l).dequantize()
for l in range(n_layers)
}
entity_df = load_entity_data(args.entity_type)
target = get_target_values(entity_df, args.feature_name)
print(timestamp(),
f'running neuron composition on {args.model} {args.entity_type}')
if args.entity_type.endswith('place'):
neuron_df = place_all_neuron_correlations(
entity_df, entity_activations, model)
else:
neuron_df = time_neuron_correlations(
target, entity_activations, model)
save_path = os.path.join('results', 'top_neurons', args.model)
os.makedirs(save_path, exist_ok=True)
neuron_df.to_csv(os.path.join(save_path, args.entity_type), index=False)