-
Notifications
You must be signed in to change notification settings - Fork 0
/
a_kalman_y.m
46 lines (43 loc) · 1.82 KB
/
a_kalman_y.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
%% 生成数据说明:
%速度在一个区间内(服从20-35m/s之间的均匀分布)
%不断变换运动方向,纵向方向的角度在-pi/12到pi/12之间均匀分布,水平面方向的角度在-pi/6和pi/6之间均匀分布
%生成T_number个时刻的图像,用于训练
% UAV A的运动轨迹
T_number = 2000; %%时刻数
Loc = zeros(T_number,3); %% 第一列表示x坐标,第二列表示y坐标,第三列表示z坐标
Loc(1,1) = 150; Loc(1,2) = 150; Loc(1,3) = 300; %第一个时刻
angle_now_v = 0; angle_now_h = 0;
rng(4);
for i = 2:1:T_number
velo_i_1 = 0.03*rand+0.04; % 上一时刻的速度
angle_i_1_h = (2/6)*pi*rand-(1/6)*pi; % 上一时刻的水平运动的角度
angle_now_h = angle_now_h+angle_i_1_h;
angle_i_1_v = (2/12)*pi*rand-(1/12)*pi; % 上一时刻的垂直运动的角度
angle_now_v = angle_now_v+angle_i_1_v;
random_i_1 = 0.001*randn; %上一时刻的随机量
Loc(i,1) = Loc(i-1,1)+velo_i_1*cos(angle_now_v)*cos(angle_now_h)+random_i_1;
Loc(i,2) = Loc(i-1,2)+velo_i_1*cos(angle_now_v)*sin(angle_now_h)+random_i_1;
Loc(i,3) = Loc(i-1,3)+velo_i_1*sin(angle_now_v)+random_i_1;
end
%% Kalman滤波
X = [120;0]; %状态矩阵,记录UAV A的y方向位置与y方向速度
P = [1 0 ; 0 1]; %状态协方差矩阵
F = [1 1; 0 1]; %状态转移矩阵
Q = [1 0; 0 1]; %状态协方差转移噪声矩阵
H = [1 0]; %观察矩阵
noise = 5*randn(1,T_number);
Pre_kalman = zeros(1,T_number);
for i = 6:1:T_number
X_ = F*X;
P_ = F*P*F'+Q;
K = P_*H'/(H*P_*H');
X = X_+K*(Loc(i-5,2)+noise(1,i)-H*X_);
P = (eye(2)-K*H)*P_;
Pre_kalman(1,i) = X(1);
end
plot(1:T_number,Pre_kalman);
hold on;
plot(1:T_number,Loc(:,2));
fileID = fopen("kalman_a_y.txt","w");
fprintf(fileID,"%f\n",Pre_kalman(1781:2000));
fclose(fileID);