forked from haomo-ai/Cam4DOcc
-
Notifications
You must be signed in to change notification settings - Fork 0
/
fuse_conv_bn.py
executable file
·67 lines (54 loc) · 2.19 KB
/
fuse_conv_bn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
# Copyright (c) OpenMMLab. All rights reserved.
import argparse
import torch
from mmcv.runner import save_checkpoint
from torch import nn as nn
from mmdet.apis import init_model
def fuse_conv_bn(conv, bn):
"""During inference, the functionary of batch norm layers is turned off but
only the mean and var alone channels are used, which exposes the chance to
fuse it with the preceding conv layers to save computations and simplify
network structures."""
conv_w = conv.weight
conv_b = conv.bias if conv.bias is not None else torch.zeros_like(
bn.running_mean)
factor = bn.weight / torch.sqrt(bn.running_var + bn.eps)
conv.weight = nn.Parameter(conv_w *
factor.reshape([conv.out_channels, 1, 1, 1]))
conv.bias = nn.Parameter((conv_b - bn.running_mean) * factor + bn.bias)
return conv
def fuse_module(m):
last_conv = None
last_conv_name = None
for name, child in m.named_children():
if isinstance(child, (nn.BatchNorm2d, nn.SyncBatchNorm)):
if last_conv is None: # only fuse BN that is after Conv
continue
fused_conv = fuse_conv_bn(last_conv, child)
m._modules[last_conv_name] = fused_conv
# To reduce changes, set BN as Identity instead of deleting it.
m._modules[name] = nn.Identity()
last_conv = None
elif isinstance(child, nn.Conv2d):
last_conv = child
last_conv_name = name
else:
fuse_module(child)
return m
def parse_args():
parser = argparse.ArgumentParser(
description='fuse Conv and BN layers in a model')
parser.add_argument('config', help='config file path')
parser.add_argument('checkpoint', help='checkpoint file path')
parser.add_argument('out', help='output path of the converted model')
args = parser.parse_args()
return args
def main():
args = parse_args()
# build the model from a config file and a checkpoint file
model = init_model(args.config, args.checkpoint)
# fuse conv and bn layers of the model
fused_model = fuse_module(model)
save_checkpoint(fused_model, args.out)
if __name__ == '__main__':
main()