-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathnf.py
218 lines (170 loc) · 7.25 KB
/
nf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import matplotlib.pyplot as plt
import numpy as np
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
# define network structure
def inputs(input_dim, hidden_dim):
x = tf.placeholder(tf.float32, [None, input_dim], 'x')
e = tf.placeholder(tf.float32, [None, hidden_dim], 'e')
return x, e
def encoder(x, e, input_dim, hidden_dim, z_dim, K, initializer=tf.contrib.layers.xavier_initializer):
'''
:param x: input
:param e:
:param input_dim:
:param hidden_dim:
:param z_dim:
:param K: number of normalizing flow
:param initializer:
:return:
'''
with tf.variable_scope('encoder'):
w_h = tf.get_variable('w_h', [input_dim, hidden_dim], initializer=initializer())
b_h = tf.get_variable('b_h', [hidden_dim])
w_mu = tf.get_variable('w_mu', [hidden_dim, z_dim], initializer=initializer())
b_mu = tf.get_variable('b_mu', [z_dim])
w_v = tf.get_variable('w_v', [hidden_dim, z_dim], initializer=initializer())
b_v = tf.get_variable('b_v', [z_dim])
# Weights for outputting normalizing flow parameters
w_us = tf.get_variable('w_us', [hidden_dim, K*z_dim])
b_us = tf.get_variable('b_us', [K*z_dim])
w_ws = tf.get_variable('w_ws', [hidden_dim, K*z_dim])
b_ws = tf.get_variable('b_ws', [K*z_dim])
w_bs = tf.get_variable('w_bs', [hidden_dim, K])
b_bs = tf.get_variable('b_bs', [K])
# compute hidden state
h = tf.nn.tanh(tf.matmul(x, w_h) + b_h)
mu = tf.matmul(h, w_mu) + b_mu
log_var = tf.matmul(h, w_v) + b_v
# re-parameterization
z = mu + tf.sqrt(tf.exp(log_var)) * e
# Normalizing Flow parameters
us = tf.matmul(h, w_us) + b_us
ws = tf.matmul(h, w_ws) + b_ws
bs = tf.matmul(h, w_bs) + b_bs
t = (us, ws, bs)
return mu, log_var, z, t
def norm_flow(z, lambd, K, Z):
us, ws, bs = lambd
log_detjs = []
for k in range(K):
u, w, b = us[:, k*Z:(k+1)*Z], ws[:, k*Z:(k+1)*Z], bs[:, k]
temp = tf.expand_dims(tf.nn.tanh(tf.reduce_sum(w*z, 1) + b), 1)
temp = tf.tile(temp, [1, u.get_shape()[1].value])
z = z + tf.multiply(u, temp)
# Eqn. (11) and (12)
temp = tf.expand_dims(dtanh(tf.reduce_sum(w*z, 1) + b), 1)
temp = tf.tile(temp, [1, w.get_shape()[1].value])
log_detj = tf.abs(1. + tf.reduce_sum(tf.multiply(u, temp*w), 1))
log_detjs.append(log_detj)
if K != 0:
log_detj = tf.reduce_sum(log_detjs)
else:
log_detj = 0
return z, log_detj
def dtanh(input):
return 1.0 - tf.square(tf.tanh(input))
def decoder(z, D, H, Z, initializer=tf.contrib.layers.xavier_initializer, out_fn=tf.sigmoid):
with tf.variable_scope('decoder'):
w_h = tf.get_variable('w_h', [Z, H], initializer=initializer())
b_h = tf.get_variable('b_h', [H])
w_mu = tf.get_variable('w_mu', [H, D], initializer=initializer())
b_mu = tf.get_variable('b_mu', [D])
w_v = tf.get_variable('w_v', [H, 1], initializer=initializer())
b_v = tf.get_variable('b_v', [1])
h = tf.nn.tanh(tf.matmul(z, w_h) + b_h)
out_mu = tf.matmul(h, w_mu) + b_mu
out_log_var = tf.matmul(h, w_v) + b_v
out = out_fn(out_mu)
return out, out_mu, out_log_var
def make_loss(pred, actual, log_var, mu, log_detj, sigma=1.0):
# kl loss
kl = -tf.reduce_mean(0.5*tf.reduce_sum(1.0 + log_var - tf.square(mu) - tf.exp(log_var), 1))
# re-construct loss
# TODO: re-construct loss should be computed by negative log-likelihood of Bernoulli distribution
# , here is only L2 loss
rec_err = 0.5*(tf.nn.l2_loss(actual - pred)) / sigma
loss = tf.reduce_mean(kl + rec_err - log_detj)
# TODO: I think it is wrong here to compute the loss, wrong sign for (kl + rec_err), need verify!
# loss = tf.reduce_mean(-kl - rec_err - log_detj) # test this loss
return loss
def train_step(sess, input_data, train_op, loss_op, x_op, e_op, Z):
e_ = np.random.normal(size=(input_data.shape[0], Z))
_, l = sess.run([train_op, loss_op], feed_dict={x_op: input_data, e_op: e_})
return l
def reconstruct(sess, batch_size, out_op, x_op, e_op, Z):
e_ = np.random.normal(size=(input_data.shape[0], Z))
x_rec = sess.run([out_op], feed_dict={x_op: input_data, e_op: e_})
return x_rec
def show_reconstruction(actual, recon):
fig, axs = plt.subplots(1, 2)
axs[0].imshow(actual.reshape(28, 28), cmap='gray')
axs[1].imshow(recon.reshape(28, 28), cmap='gray')
axs[0].set_title('actual')
axs[1].set_title('reconstructed')
plt.show()
def sample_latent(sess, input_data, z_op, x_op, e_op, Z):
e_ = np.random.normal(size=(input_data.shape[0], Z))
zs = sess.run(z_op, feed_dict={x_op: input_data, e_op: e_})
return zs
if __name__ == '__main__':
N = 1000
xs = np.vstack((
np.random.uniform(-6, -2, size=(N//3, 2)),
np.random.multivariate_normal([0, 0], np.eye(2) / 2, size=N//3),
np.random.multivariate_normal([5, -5], np.eye(2) / 2, size=N//3)
))
ys = np.repeat(np.arange(3), N // 3)
idxs = np.random.choice(range(xs.shape[0]), xs.shape[0])
xs, ys = xs[idxs], ys[idxs]
plt.scatter(xs[:, 0], xs[:, 1], c=ys)
plt.title('original data')
plt.show()
tf.reset_default_graph()
data = xs
data_dim = xs.shape[1]
enc_h = 128
enc_z = 2
dec_h = 128
max_iters = 10000
batch_size = data.shape[0]
learning_rate = 0.001
k = 3
x, e = inputs(data_dim, enc_z)
mu, log_var, z0, lambd = encoder(x, e, data_dim, enc_h, enc_z, k)
z_k, log_detj = norm_flow(z0, lambd, k, enc_z)
out_op, out_mu, out_log_var = decoder(z_k, data_dim, dec_h, enc_z, out_fn=tf.identity)
loss_op = make_loss(out_op, x, log_var, mu, log_detj, z0)
train_op = tf.train.AdamOptimizer(learning_rate).minimize(loss_op)
sess = tf.InteractiveSession()
sess.run(tf.initialize_all_variables())
idx = 0
for i in range(max_iters):
x_ = data[idx:idx + batch_size]
l = train_step(sess, x_, train_op, loss_op, x, e, enc_z)
idx += batch_size
if idx >= x_.shape[0]:
idx = 0
if i % 1000 == 0:
print('iter: %d\tloss: %.2f' % (i, l))
zs = sample_latent(sess, xs, z_k, x, e, enc_z)
fig = plt.figure(figsize=(8, 6))
plt.scatter(zs[:, 0], zs[:, 1], c=ys)
plt.title('latent z values for each point in the dataset')
plt.show()
k = 500
# Take a data point from each class, replicate it k times
x_ = np.repeat(data[[(ys == i).argmax() for i in range(3)]], k, axis=0)
y_ = np.repeat(np.arange(3), k)
e_ = np.random.normal(size=(x_.shape[0], enc_z))
zs = sess.run(z_k, feed_dict={x: x_, e: e_})
fig = plt.figure(figsize=(8, 6))
plt.scatter(zs[:, 0], zs[:, 1], c=y_)
plt.title("Posterior samples")
plt.show()
reconstructed = reconstruct(sess, 1000, out_op, x, e, enc_z)[0]
plt.scatter(reconstructed[:, 0], reconstructed[:, 1])
plt.title('reconstructed data')
plt.show()