forked from cgpotts/cs224u
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtorch_rnn_classifier.py
248 lines (215 loc) · 7.71 KB
/
torch_rnn_classifier.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
import numpy as np
from operator import itemgetter
import torch
import torch.nn as nn
import torch.utils.data
from torch_model_base import TorchModelBase
from utils import progress_bar
__author__ = "Christopher Potts"
__version__ = "CS224u, Stanford, Spring 2019"
class TorchRNNDataset(torch.utils.data.Dataset):
def __init__(self, sequences, seq_lengths, y):
assert len(sequences) == len(y)
assert len(sequences) == len(seq_lengths)
self.sequences = sequences
self.seq_lengths = seq_lengths
self.y = y
@staticmethod
def collate_fn(batch):
X, seq_lengths, y = zip(*batch)
X = torch.nn.utils.rnn.pad_sequence(X, batch_first=True)
seq_lengths = torch.tensor(seq_lengths, dtype=torch.long)
y = torch.tensor(y, dtype=torch.long)
return X, seq_lengths, y
def __len__(self):
return len(self.sequences)
def __getitem__(self, idx):
return (self.sequences[idx], self.seq_lengths[idx], self.y[idx])
class TorchRNNClassifierModel(nn.Module):
def __init__(self,
vocab,
embed_dim,
embedding,
hidden_dim,
output_dim,
bidirectional,
device):
super(TorchRNNClassifierModel, self).__init__()
self.vocab = vocab
self.vocab_size = len(vocab)
self.embed_dim = embed_dim
self.hidden_dim = hidden_dim
self.output_dim = output_dim
self.bidirectional = bidirectional
self.device = device
# Graph
self.embedding = self._define_embedding(embedding)
self.embed_dim = self.embedding.embedding_dim
self.rnn = nn.LSTM(
input_size=self.embed_dim,
hidden_size=self.hidden_dim,
batch_first=True,
bidirectional=self.bidirectional)
if self.bidirectional:
self.classifier_dim = self.hidden_dim * 2
else:
self.classifier_dim = self.hidden_dim
self.classifier_layer = nn.Linear(
self.classifier_dim, self.output_dim)
def forward(self, X, seq_lengths):
state = self.rnn_forward(X, seq_lengths, self.rnn)
logits = self.classifier_layer(state)
return logits
def rnn_forward(self, X, seq_lengths, rnn):
X = torch.nn.utils.rnn.pad_sequence(X, batch_first=True)
X = X.to(self.device)
seq_lengths = seq_lengths.to(self.device)
seq_lengths, sort_idx = seq_lengths.sort(0, descending=True)
X = X[sort_idx]
embs = self.embedding(X)
embs = torch.nn.utils.rnn.pack_padded_sequence(
embs, batch_first=True, lengths=seq_lengths)
outputs, state = rnn(embs)
state = self.get_batch_final_states(state)
if self.bidirectional:
state = torch.cat((state[0], state[1]), dim=1)
_, unsort_idx = sort_idx.sort(0)
state = state[unsort_idx]
return state
def get_batch_final_states(self, state):
if self.rnn.__class__.__name__ == 'LSTM':
return state[0].squeeze(0)
else:
return state.squeeze(0)
def _define_embedding(self, embedding):
if embedding is None:
return nn.Embedding(self.vocab_size, self.embed_dim)
else:
embedding = torch.tensor(embedding, dtype=torch.float)
return nn.Embedding.from_pretrained(embedding)
class TorchRNNClassifier(TorchModelBase):
def __init__(self,
vocab,
embedding=None,
embed_dim=50,
bidirectional=False,
**kwargs):
self.vocab = vocab
self.embedding = embedding
self.embed_dim = embed_dim
self.bidirectional = bidirectional
super(TorchRNNClassifier, self).__init__(**kwargs)
def build_dataset(self, X, y):
X, seq_lengths = self._prepare_dataset(X)
return TorchRNNDataset(X, seq_lengths, y)
def build_graph(self):
return TorchRNNClassifierModel(
self.vocab,
embedding=self.embedding,
embed_dim=self.embed_dim,
hidden_dim=self.hidden_dim,
output_dim=self.n_classes_,
bidirectional=self.bidirectional,
device=self.device)
def fit(self, X, y):
# Data prep:
self.classes_ = sorted(set(y))
self.n_classes_ = len(self.classes_)
class2index = dict(zip(self.classes_, range(self.n_classes_)))
y = [class2index[label] for label in y]
dataset = self.build_dataset(X, y)
dataloader = torch.utils.data.DataLoader(
dataset,
batch_size=self.batch_size,
shuffle=True,
drop_last=False,
collate_fn=dataset.collate_fn)
# Graph:
self.model = self.build_graph()
self.model.to(self.device)
# Optimization:
loss = nn.CrossEntropyLoss()
optimizer = self.optimizer(
self.model.parameters(),
lr=self.eta,
weight_decay=self.l2_strength)
# Train:
for iteration in range(1, self.max_iter+1):
epoch_error = 0.0
for X_batch, batch_seq_lengths, y_batch in dataloader:
y_batch = y_batch.to(self.device)
batch_preds = self.model(X_batch, batch_seq_lengths)
err = loss(batch_preds, y_batch)
epoch_error += err.item()
# Backprop:
optimizer.zero_grad()
err.backward()
optimizer.step()
progress_bar("Finished epoch {} of {}; error is {}".format(
iteration, self.max_iter, epoch_error))
return self
def predict_proba(self, X):
with torch.no_grad():
X, seq_lengths = self._prepare_dataset(X)
preds = self.model(X, seq_lengths)
preds = torch.softmax(preds, dim=1).cpu().numpy()
return preds
def predict(self, X):
probs = self.predict_proba(X)
return [self.classes_[i] for i in probs.argmax(axis=1)]
def _prepare_dataset(self, X):
new_X = []
seq_lengths = []
index = dict(zip(self.vocab, range(len(self.vocab))))
unk_index = index['$UNK']
for ex in X:
seq = [index.get(w, unk_index) for w in ex]
seq = torch.tensor(seq, dtype=torch.long)
new_X.append(seq)
seq_lengths.append(len(seq))
return new_X, torch.LongTensor(seq_lengths)
def simple_example(initial_embedding=False):
vocab = ['a', 'b', '$UNK']
# No b before an a
train = [
[list('ab'), 'good'],
[list('aab'), 'good'],
[list('abb'), 'good'],
[list('aabb'), 'good'],
[list('ba'), 'bad'],
[list('baa'), 'bad'],
[list('bba'), 'bad'],
[list('bbaa'), 'bad'],
[list('aba'), 'bad']
]
test = [
[list('baaa'), 'bad'],
[list('abaa'), 'bad'],
[list('bbaa'), 'bad'],
[list('aaab'), 'good'],
[list('aaabb'), 'good']
]
if initial_embedding:
import numpy as np
embedding = np.random.uniform(
low=-1.0, high=1.0, size=(len(vocab), 50))
else:
embedding = None
mod = TorchRNNClassifier(
vocab=vocab,
max_iter=100,
embed_dim=50,
embedding=embedding,
bidirectional=False,
hidden_dim=50)
X, y = zip(*train)
mod.fit(X, y)
X_test, y_test = zip(*test)
preds = mod.predict(X_test)
print("\nPredictions:")
for ex, pred, gold in zip(X_test, preds, y_test):
score = "correct" if pred == gold else "incorrect"
print("{0:>6} - predicted: {1:>4}; actual: {2:>4} - {3}".format(
"".join(ex), pred, gold, score))
if __name__ == '__main__':
simple_example()