Skip to content

Commit 3580126

Browse files
committed
Refactor fraction recursion equations for clarity and introduce new variable for simplification
1 parent e0da8b4 commit 3580126

File tree

1 file changed

+4
-4
lines changed

1 file changed

+4
-4
lines changed

source/_posts/frac-recursion.md

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -108,7 +108,7 @@ $$
108108
$$
109109
\begin{aligned}
110110
\dfrac{1}{a\_{n}} &= \left(\dfrac{1}{a\_0}+\dfrac{p}{q-s}\right)\cdot\left(\dfrac{q}{s}\right)^n-\dfrac{p}{q-s} \\\\
111-
a\_n &= \dfrac{\left(q-s\right)a\_{0}}{\left(pa\_{0}+q-s\right)\cdot\left(\dfrac{q}{s}\right)^{n}-pa\_{0}}
111+
a\_n &= \dfrac{\left(q-s\right)a\_0}{\left(pa\_0+q-s\right)\cdot\left(\dfrac{q}{s}\right)^n-pa\_0}
112112
\end{aligned}
113113
$$
114114

@@ -243,11 +243,11 @@ $$
243243
整理得
244244

245245
$$
246-
a\_n=\dfrac{\left(-\alpha+\beta\left(\dfrac{\alpha p}{\beta p-s}-\dfrac{s}{\beta p-s}\right)^n\right)a\_0-\alpha\beta\left(\dfrac{\alpha p}{\beta p-s}-\dfrac{s}{\beta p-s}\right)^n+\alpha\beta}{\left(\left(\dfrac{\alpha p}{\beta p-s}-\dfrac{s}{\beta p-s}\right)^n-1\right)a\_0-\alpha\left(\dfrac{\alpha p}{\beta p-s}-\dfrac{s}{\beta p-s}\right)^n+\beta}
246+
a_n=\dfrac{a_0\left(-q\left(\dfrac{q+s+\sqrt{4pt+q^2-2qs+s^2}}{q+s-\sqrt{4pt+q^2-2qs+s^2}}\right)^n+q+s\left(\dfrac{q+s+\sqrt{4pt+q^2-2qs+s^2}}{q+s-\sqrt{4pt+q^2-2qs+s^2}}\right)^n-s+\left(\dfrac{q+s+\sqrt{4pt+q^2-2qs+s^2}}{q+s-\sqrt{4pt+q^2-2qs+s^2}}\right)^n\sqrt{4pt+q^2-2qs+s^2}+\sqrt{4pt+q^2-2qs+s^2}\right)+2t\left(\dfrac{q+s+\sqrt{4pt+q^2-2qs+s^2}}{q+s-\sqrt{4pt+q^2-2qs+s^2}}\right)^n-2t}{a_0\left(2p\left(\dfrac{q+s+\sqrt{4pt+q^2-2qs+s^2}}{q+s-\sqrt{4pt+q^2-2qs+s^2}}\right)^n-2p\right)+q\left(\dfrac{q+s+\sqrt{4pt+q^2-2qs+s^2}}{q+s-\sqrt{4pt+q^2-2qs+s^2}}\right)^n-q-s\left(\dfrac{q+s+\sqrt{4pt+q^2-2qs+s^2}}{q+s-\sqrt{4pt+q^2-2qs+s^2}}\right)^n+s+\left(\dfrac{q+s+\sqrt{4pt+q^2-2qs+s^2}}{q+s-\sqrt{4pt+q^2-2qs+s^2}}\right)^n\sqrt{4pt+q^2-2qs+s^2}+\sqrt{4pt+q^2-2qs+s^2}}
247247
$$
248248

249-
$\alpha,\beta$ 代入
249+
$\lambda=\dfrac{q+s+\sqrt{4pt+q^2-2qs+s^2}}{q+s-\sqrt{4pt+q^2-2qs+s^2}}$,
250250

251251
$$
252-
a_n=\dfrac{a_{0} p \left(q - s + \left(\dfrac{q + s + \sqrt{4 p t + (q - s)^{2}}}{q + s - \sqrt{4 p t + (q - s)^{2}}}\right)^{n} \left(- q + s + \sqrt{4 p t + (q - s)^{2}}\right) + \sqrt{4 p t + (q - s)^{2}}\right) + \dfrac{\left(\left(\dfrac{q + s + \sqrt{4 p t + (q - s)^{2}}}{q + s - \sqrt{4 p t + (q - s)^{2}}}\right)^{n} - 1\right) \left(- q + s + \sqrt{4 p t + (q - s)^{2}}\right) \left(q - s + \sqrt{4 p t + (q - s)^{2}}\right)}{2}}{p \left(2 a_{0} p \left(\left(\dfrac{q + s + \sqrt{4 p t + (q - s)^{2}}}{q + s - \sqrt{4 p t + (q - s)^{2}}}\right)^{n} - 1\right) - q + s + \left(\dfrac{q + s + \sqrt{4 p t + (q - s)^{2}}}{q + s - \sqrt{4 p t + (q - s)^{2}}}\right)^{n} \left(q - s + \sqrt{4 p t + (q - s)^{2}}\right) + \sqrt{4 p t + (q - s)^{2}}\right)}
252+
a_n=\dfrac{a_0\left(-q\lambda^n+q+s\lambda^n-s+\lambda^n\sqrt{4pt+q^2-2qs+s^2}+\sqrt{4pt+q^2-2qs+s^2}\right)+2t\lambda^n-2t}{a_0\left(2p\lambda^n-2p\right)+q\lambda^n-q-s\lambda^n+s+\lambda^n\sqrt{4pt+q^2-2qs+s^2}+\sqrt{4pt+q^2-2qs+s^2}}
253253
$$

0 commit comments

Comments
 (0)