-
-
Notifications
You must be signed in to change notification settings - Fork 26
/
Copy pathdeepbedmap.py
774 lines (677 loc) · 26.9 KB
/
deepbedmap.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
# -*- coding: utf-8 -*-
# ---
# jupyter:
# jupytext:
# formats: ipynb,py:hydrogen
# text_representation:
# extension: .py
# format_name: hydrogen
# format_version: '1.2'
# jupytext_version: 1.2.0
# kernelspec:
# display_name: deepbedmap
# language: python
# name: deepbedmap
# ---
# %% [markdown]
# # **DeepBedMap**
#
# Predicting the bed elevation of Antarctica using our trained Super Resolution Deep Neural Network.
# The results will be compared against other interpolated grid products along groundtruth tracks in small regions.
# Finally we will produce an Antarctic-wide DeepBedMap Digital Elevation Model (DEM) at the very end!
# %%
import dataclasses
import math
import os
import typing
os.environ["CUDA_VISIBLE_DEVICES"] = ""
import xarray as xr
import salem
import geopandas as gpd
import matplotlib
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import axes3d
import numpy as np
import pandas as pd
import pygmt as gmt
import quilt
import rasterio
import skimage
import comet_ml
import chainer
import cupy
from features.environment import _load_ipynb_modules, _download_model_weights_from_comet
data_prep = _load_ipynb_modules("data_prep.ipynb")
# %% [markdown]
# # 1. Gather datasets
# %% [markdown]
# ## 1.1 Get bounding box of our area of interest
#
# Basically predict on an place where we have groundtruth data to validate against.
# %%
def get_image_with_bounds(filepaths: list, indexers: dict = None) -> xr.DataArray:
"""
Retrieve raster image in xarray.DataArray format patched
with projected coordinate bounds as (xmin, ymin, xmax, ymax)
Note that if more than one filepath is passed in,
the output groundtruth image array will not be valid
(see https://github.com/pydata/xarray/issues/2159),
but the window_bound extents will be correct
"""
with xr.open_mfdataset(
paths=filepaths, combine="nested", concat_dim=None
) as dataset:
# Retrieve dataarray from NetCDF datasets
dataarray = dataset.z.isel(indexers=indexers)
# Patch projection information into xarray grid
dataarray.attrs["pyproj_srs"] = "epsg:3031"
sgrid = dataarray.salem.grid.corner_grid
assert sgrid.origin == "lower-left" # should be "lower-left", not "upper-left"
# Patch bounding box extent into xarray grid
if len(filepaths) == 1:
left, right, bottom, top = sgrid.extent
elif len(filepaths) > 1:
print("WARN: using multiple inputs, output groundtruth image may look funny")
x_offset, y_offset = sgrid.dx / 2, sgrid.dy / 2
left, right = (
float(dataarray.x[0] - x_offset),
float(dataarray.x[-1] + x_offset),
)
assert sgrid.x0 == left
bottom, top = (
float(dataarray.y[0] - y_offset),
float(dataarray.y[-1] + y_offset),
)
assert sgrid.y0 == bottom # dataarray.y.min()-y_offset
# check that y-axis and x-axis lengths are divisible by 4
try:
shape = int((top - bottom) / sgrid.dy), int((right - left) / sgrid.dx)
assert all(i % 4 == 0 for i in shape)
except AssertionError:
print(f"WARN: Image shape {shape} should be divisible by 4 for DeepBedMap")
finally:
dataarray.attrs["bounds"] = [left, bottom, right, top]
return dataarray
# %%
test_filepaths = ["highres/2007tx", "highres/2010tr", "highres/istarxx"]
# test_filepaths = ["highres/20xx_Antarctica_DC8_THW"]
groundtruth = get_image_with_bounds(
filepaths=[f"{t}.nc" for t in test_filepaths],
# indexers={"y": slice(1, -2), "x": slice(1, -2)}, # for 2007tx
indexers={"x": slice(1, -2)}, # for 2007tx, 2010tr and istarxx
)
window_bound = rasterio.coords.BoundingBox(*groundtruth.bounds)
print(window_bound)
# %% [markdown]
# ## 1.2 Get neural network input datasets
#
# Collect BEDMAP2 (X), REMA (W1), MEaSUREs Ice Flow (W2) and Antarctic Snow Accumulation (W3) datasets
# cropped to our area of interest that will be fed into our trained neural network later.
# %%
def get_deepbedmap_model_inputs(
window_bound: rasterio.coords.BoundingBox,
padding: int = 1000,
use_whole_rema: bool = False,
) -> (np.ndarray, np.ndarray, np.ndarray, np.ndarray):
"""
Outputs one large tile for each of:
BEDMAP2, REMA, MEASURES Ice Flow Velocity and Antarctic Snow Accumulation
according to a given window_bound in the form of (xmin, ymin, xmax, ymax).
"""
data_prep = _load_ipynb_modules("data_prep.ipynb")
bounds_str = "_".join(str(int(b)) for b in (window_bound)).replace("-", "m")
if window_bound in [
rasterio.coords.BoundingBox(
left=-1_594_000.0, bottom=-166_500.0, right=-1_575_000.0, top=-95_500.0
),
rasterio.coords.BoundingBox(
left=-1_631_500.0, bottom=-259_000.0, right=-1_536_500.0, top=-95_000.0
),
rasterio.coords.BoundingBox(
left=-1_524_500.0, bottom=-650_000.0, right=-1_274_500.0, top=-300_000.0
),
]:
# Quickly pull from cached quilt storage if using (hardcoded) test region
quilt.install(package=f"weiji14/deepbedmap/model/test/{bounds_str}", force=True)
pkg = quilt.load(pkginfo=f"weiji14/deepbedmap/model/test/{bounds_str}")
X_tile = pkg.X_tile()
W1_tile = pkg.W1_tile()
W2_tile = pkg.W2_tile()
W3_tile = pkg.W3_tile()
else:
X_tile = data_prep.selective_tile(
filepath="lowres/bedmap2_bed.tif",
window_bounds=[[*window_bound]],
padding=padding,
gapfiller=-5000.0,
)
W3_tile = data_prep.selective_tile(
filepath="misc/Arthern_accumulation_bedmap2_grid1.tif",
window_bounds=[[*window_bound]],
padding=padding,
gapfiller=0.0,
)
W2_tile = np.concatenate(
[
data_prep.selective_tile(
filepath="netcdf:misc/antarctic_ice_vel_phase_map_v01.nc:VX",
window_bounds=[[*window_bound]],
resolution=500,
padding=padding,
gapfiller=0.0,
),
data_prep.selective_tile(
filepath="netcdf:misc/antarctic_ice_vel_phase_map_v01.nc:VY",
window_bounds=[[*window_bound]],
resolution=500,
padding=padding,
gapfiller=0.0,
),
],
axis=1,
)
if not use_whole_rema:
W1_tile = data_prep.selective_tile(
filepath="misc/REMA_100m_dem_filled.tif",
window_bounds=[[*window_bound]],
padding=padding,
)
elif use_whole_rema:
print("Getting: misc/REMA_100m_dem_filled.tif ...", end="")
with xr.open_rasterio("misc/REMA_100m_dem_filled.tif") as ds:
W1_tile = np.expand_dims(a=ds.values, axis=0)
# special zero padding for REMA, 10pixels on top, bottom, left and right
W1_tile = np.pad(
array=W1_tile,
pad_width=[(0, 0), (0, 0), (10, 10), (10, 10)],
mode="constant",
)
print("Done!")
return X_tile, W1_tile, W2_tile, W3_tile
# %%
X_tile, W1_tile, W2_tile, W3_tile = get_deepbedmap_model_inputs(
window_bound=window_bound
)
print(X_tile.shape, W1_tile.shape, W2_tile.shape, W3_tile.shape)
# Build quilt package for datasets covering our test region
reupload = False
if reupload == True:
bounds_str = "_".join(str(int(b)) for b in (window_bound)).replace("-", "m")
quilt.build(
package=f"weiji14/deepbedmap/model/test/{bounds_str}/W1_tile", path=W1_tile
)
quilt.build(
package=f"weiji14/deepbedmap/model/test/{bounds_str}/W2_tile", path=W2_tile
)
quilt.build(
package=f"weiji14/deepbedmap/model/test/{bounds_str}/W3_tile", path=W3_tile
)
quilt.build(
package=f"weiji14/deepbedmap/model/test/{bounds_str}/X_tile", path=X_tile
)
quilt.push(package=f"weiji14/deepbedmap/model/test/{bounds_str}", is_public=True)
# %%
def subplot(directive: str, row: int = None, col: int = None, **kwargs):
"""Thin wrapper around https://docs.generic-mapping-tools.org/latest/subplot.html"""
with gmt.clib.Session() as lib:
rowcol = "" # default is blank, e.g. when directive == "end"
if row is not None and col is not None:
if directive == "begin":
rowcol = f"{row}x{col}"
elif directive == "set":
rowcol = f"{row},{col}"
arg_str = " ".join(
a for a in [directive, rowcol, gmt.helpers.build_arg_string(kwargs)] if a
)
lib.call_module(module="subplot", args=arg_str)
# %%
def plot_3d_view(
fig: gmt.figure.Figure, # PyGMT figure class to plot in
img: str, # filename (or xr.DataArray in the future) of the DEM to plot
ax: tuple = None, # optional (row, col) specifying gmt subplot position to use
elev: int = 60, # elevation angle above z-plane, value between 0-90
azim: int = 202.5, # azimuth from North, e.g. SouthEast is 135
zmin: int = -1400, # z-plane minimum elevation, in metres below or above datum
cmap: str = "oleron", # colormap to use
title: str = None, # title/label for the plot
zlabel: str = None, # z-axis label
):
"""
Creates a 3D perspective view plot of an elevation surface using gmt grdview.
The elevation (elev) and azimuth (azim) angle will need to be set accordingly,
here it is looking from the SSW (202.5deg) at an angle 60deg above the z-plane.
You can also provide a title (actually an annotation) and z-axis label. Note that
there are several hardcoded defaults like the vertical exaggeration and axis labels.
"""
if ax:
row, col = ax # split ax tuple into (row, col)
subplot(directive="set", row=row, col=col, A=f'"{title}"')
fig.grdview(
grid=img,
frame=[
f"SWZ", # plot South, West axes, and Z-axis
'xaf+l"Polar Stereographic X (m)"', # add x-axis annotations and minor ticks
'yaf+l"Polar Stereographic Y (m)"', # add y-axis annotations and minor ticks
f'zaf+l"{zlabel}"', # add z-axis annotations, minor ticks and axis label
],
cmap=cmap, # colormap to use
zscale=0.01, # zscaling factor, default to 10x vertical exaggeration
surftype="sim", # surface, image and mesh plot
plane=zmin, # z-plane to plot on
perspective=[azim, elev], # perspective using azimuth/elevation
)
return fig
# %% [markdown]
# ### Plot figures of neural network raster inputs in 2D
# %%
fig, axarr = plt.subplots(nrows=1, ncols=4, squeeze=False, figsize=(16, 12))
axarr[0, 0].imshow(X_tile[0, 0, :, :], cmap="BrBG")
axarr[0, 0].set_title("BEDMAP2\n(1000m resolution)")
axarr[0, 1].imshow(W1_tile[0, 0, :, :], cmap="BrBG")
axarr[0, 1].set_title("Reference Elevation Model of Antarctica\n(100m resolution)")
axarr[0, 2].imshow(np.linalg.norm(W2_tile, axis=(0, 1)), cmap="BrBG")
axarr[0, 2].set_title("MEaSUREs Ice Speed\n(450m resolution)")
axarr[0, 3].imshow(W3_tile[0, 0, :, :], cmap="BrBG")
axarr[0, 3].set_title("Antarctic Snow Accumulation\n(1000m resolution)")
plt.show()
# %% [markdown]
# ## 1.3 Prepare other interpolated grids for comparison
#
# We'll also have two other grids (interpolated to spatial resolution of 250m) to compare with our DeepBedMap model's prediction.
# They are:
#
# - Bicubic interpolated BEDMAP2 (baseline, originally 1000m)
# - Bilinear interpolated Synthetic High Resolution Grid from [Graham et al. 2017](https://doi.org/10.5194/essd-9-267-2017) (originally 100m)
# %%
cubicbedmap = skimage.transform.rescale(
image=X_tile[0, 0, 1:-1, 1:-1].astype(np.int32),
scale=4, # 4x upscaling
order=3, # cubic interpolation
mode="reflect",
anti_aliasing=True,
multichannel=False,
preserve_range=True,
)
cubicbedmap = np.expand_dims(np.expand_dims(cubicbedmap, axis=0), axis=0)
print(cubicbedmap.shape)
# Save Bicubic Resampled BEDMAP2 to GeoTiff and NetCDF format
cubicbedmap_grid = data_prep.save_array_to_grid(
outfilepath="model/cubicbedmap",
window_bound=window_bound,
array=cubicbedmap[0, :, :, :],
save_netcdf=True,
)
# %%
S_tile = data_prep.selective_tile(
filepath="model/hres.tif", window_bounds=[[*window_bound]], interpolate=False
)
print(S_tile.shape)
synthetichr = skimage.transform.rescale(
image=S_tile[0, 0, :, :].astype(np.int32),
scale=1 / 2.5, # 2.5 downscaling
order=1, # billinear interpolation
mode="reflect",
anti_aliasing=True,
multichannel=False,
preserve_range=True,
)
synthetichr = np.expand_dims(np.expand_dims(synthetichr, axis=0), axis=0)
print(synthetichr.shape)
# Save Billinear Resampled Synthetic High Resolution grid to GeoTiff and NetCDF format
synthetichr_grid = data_prep.save_array_to_grid(
outfilepath="model/synthetichr",
window_bound=window_bound,
array=synthetichr[0, :, :, :],
save_netcdf=True,
)
# %% [markdown]
# # 2. Predict Bed Elevation
# %% [markdown]
# ## 2.1 Load trained generator neural network
#
# Fully convolutional networks rock!!
# Since we have a fully convolutional model architecture,
# we can use the same trained weights on different sized inputs/outputs!
# That way we can predict directly on an arbitrarily sized window.
# %%
def load_trained_model(
experiment_key: str = "77126218f3504a06adbc7dfe3851bb28", # or simply use "latest"
model_weights_path: str = "model/weights/srgan_generator_model_weights.npz",
):
"""
Returns a trained Generator DeepBedMap neural network model,
and the hyperparameters that were used to train it.
The model's weights and hyperparameters settings are retrieved from
https://comet.ml/weiji14/deepbedmap using an `experiment_key` setting
which can be set to 'latest' or some 32-character alphanumeric string.
"""
srgan_train = _load_ipynb_modules("srgan_train.ipynb")
# Download either 'latest' model weights from Comet.ML or one using experiment_key
# Will also get the hyperparameters "num_residual_blocks" and "residual_scaling"
hyperparameters = _download_model_weights_from_comet(
experiment_key=experiment_key, download_path=model_weights_path
)
# Architect the model with appropriate "num_residual_blocks" and "residual_scaling"
model = srgan_train.GeneratorModel(
num_residual_blocks=int(hyperparameters["num_residual_blocks"]),
residual_scaling=float(hyperparameters["residual_scaling"]),
)
# Load trained neural network weights into model
chainer.serializers.load_npz(file=model_weights_path, obj=model)
return model, hyperparameters
# %%
model, _ = load_trained_model()
# %% [markdown]
# ## 2.2 Make prediction on area of interest
# %%
with chainer.using_config(name="enable_backprop", value=False):
Y_hat = model.forward(x=X_tile, w1=W1_tile, w2=W2_tile, w3=W3_tile).array
# %%
# Save BEDMAP3 to GeoTiff and NetCDF format
deepbedmap3_grid = data_prep.save_array_to_grid(
outfilepath="model/deepbedmap3",
window_bound=window_bound,
array=Y_hat[0, :, :, :],
save_netcdf=True,
)
deepbedmap3_grid = xr.DataArray(
data=np.flipud(cupy.asnumpy(Y_hat[0, 0, :, :])),
dims=["y", "x"],
coords={"y": deepbedmap3_grid.y, "x": deepbedmap3_grid.x}, # for multiple grids
# coords={"y": groundtruth.y, "x": groundtruth.x}, # for single grid
)
deepbedmap3_grid = xr.open_dataarray("model/deepbedmap3.nc")
# %%
# Get elevation difference between DeepBedMap and CubicBedMap
elevdiffmap = deepbedmap3_grid - cubicbedmap_grid
elevdiffmap_grid = data_prep.save_array_to_grid(
outfilepath="model/elevdiffmap",
window_bound=window_bound,
array=elevdiffmap,
save_netcdf=True,
)
# %% [markdown]
# ### Plot DeepBedMap prediction alongside other interpolated grids and groundtruth in 2D and 3D
# %%
fig, axarr = plt.subplots(nrows=1, ncols=4, squeeze=False, figsize=(22, 12))
axarr[0, 0].imshow(X_tile[0, 0, :, :], cmap="BrBG")
axarr[0, 0].set_title("BEDMAP2")
axarr[0, 1].imshow(Y_hat[0, 0, :, :], cmap="BrBG")
axarr[0, 1].set_title("Super Resolution Generative Adversarial Network prediction")
axarr[0, 2].imshow(S_tile[0, 0, :, :], cmap="BrBG")
axarr[0, 2].set_title("Synthetic High Resolution Grid")
groundtruth.plot(ax=axarr[0, 3], cmap="BrBG")
axarr[0, 3].set_title("Groundtruth grids")
plt.show()
# %%
fig = gmt.Figure()
subplot(directive="begin", row=2, col=2, A="+jCT+o-4c/-5c", Fs="9c/9c", M="2c/3c")
plot_3d_view(
fig=fig,
img="model/deepbedmap3.nc", # DeepBedMap
ax=(0, 0),
zmin=-1400,
title="DeepBedMap", # ours
zlabel="Bed elevation (metres)",
)
plot_3d_view(
fig=fig,
img="model/cubicbedmap.nc", # BEDMAP2
ax=(0, 1),
zmin=-1400,
title="BEDMAP2",
zlabel="Bed elevation (metres)",
)
plot_3d_view(
fig=fig,
img="model/elevdiffmap.nc", # DeepBedMap - BEDMAP2
ax=(1, 0),
zmin=-400,
title="Elevation Diff",
zlabel="Difference (metres)",
)
plot_3d_view(
fig=fig,
img="model/synthetichr.nc", # Synthetic High Resolution product
ax=(1, 1),
zmin=-1400,
title="Synthetic HRES",
zlabel="Bed elevation (metres)",
)
subplot(directive="end")
fig.savefig(fname="esrgan_prediction.eps", crop=False)
fig.show()
# %% [markdown]
# # 3. Elevation 'error' analysis
# %% [markdown]
# Here we compare the elevation error (or difference) between our grid and many many points!
# We use [PyGMT](https://github.com/GenericMappingTools/pygmt)'s [grdtrack](https://docs.generic-mapping-tools.org/latest/grdtrack.html) to sample the grid along the survey track points.
#
# The survey tracks are basically geographic points (x, y) with an elevation (z)
# that were collected from an airplane or ground vehicle crossing Antarctica.
# The four grids we sample from all have a spatial resolution of 250m and they are:
#
# - Groundtruth grid (interpolated from our groundtruth points using [surface](https://docs.generic-mapping-tools.org/latest/surface.html))
# - DeepBedMap3 grid (predicted from our [Super Resolution Generative Adversarial Network model](/srgan_train.ipynb))
# - CubicBedMap grid (interpolated from BEDMAP2 using a [bicubic spline algorithm](http://scikit-image.org/docs/dev/api/skimage.transform.html#skimage.transform.rescale))
# - Synthetic High Res grid (created by [Graham et al. 2017](https://doi.org/10.5194/essd-9-267-2017))
#
# References:
#
# - Wessel, P., Smith, W. H. F., Scharroo, R., Luis, J., & Wobbe, F. (2013). Generic Mapping Tools: Improved Version Released. Eos, Transactions American Geophysical Union, 94(45), 409–410. https://doi.org/10.1002/2013EO450001
# - Wessel, P. (2010). Tools for analyzing intersecting tracks: The x2sys package. Computers & Geosciences, 36(3), 348–354. https://doi.org/10.1016/j.cageo.2009.05.009
# %%
tracks = [data_prep.ascii_to_xyz(pipeline_file=f"{pf}.json") for pf in test_filepaths]
points: pd.DataFrame = pd.concat(objs=tracks) # concatenate all tracks into one table
# %%
df_groundtruth = gmt.grdtrack(
points=points, grid=groundtruth, newcolname="z_interpolated"
)
# df_deepbedmap3 = gmt.grdtrack(
# points=points, grid=deepbedmap3_grid, newcolname="z_interpolated"
# )
df_deepbedmap3 = gmt.grdtrack(
points=points, grid="model/deepbedmap3.nc", newcolname="z_interpolated"
)
df_cubicbedmap = gmt.grdtrack(
points=points, grid="model/cubicbedmap.nc", newcolname="z_interpolated"
)
df_synthetichr = gmt.grdtrack(
points=points, grid="model/synthetichr.nc", newcolname="z_interpolated"
)
# %% [markdown]
# ### Get table statistics
# %%
df_groundtruth["error"] = df_groundtruth.z_interpolated - df_groundtruth.z
df_groundtruth.describe()
# %%
df_deepbedmap3["error"] = df_deepbedmap3.z_interpolated - df_deepbedmap3.z
df_deepbedmap3.describe()
# %%
df_cubicbedmap["error"] = df_cubicbedmap.z_interpolated - df_cubicbedmap.z
df_cubicbedmap.describe()
# %%
df_synthetichr["error"] = df_synthetichr.z_interpolated - df_synthetichr.z
df_synthetichr.describe()
# %% [markdown]
# ### Plot elevation error histogram
# %%
# https://medium.com/usf-msds/choosing-the-right-metric-for-machine-learning-models-part-1-a99d7d7414e4
rmse_groundtruth = (df_groundtruth.error ** 2).mean() ** 0.5
rmse_deepbedmap3 = (df_deepbedmap3.error ** 2).mean() ** 0.5
rmse_cubicbedmap = (df_cubicbedmap.error ** 2).mean() ** 0.5
rmse_synthetichr = (df_synthetichr.error ** 2).mean() ** 0.5
bins = 50
fig, ax = plt.subplots(figsize=(16, 9))
# ax.set_yscale(value="symlog")
ax.set_xlim(left=-150, right=100)
df_groundtruth.hist(
column="error",
bins=25,
ax=ax,
histtype="step",
label=f"Groundtruth RMSE: {rmse_groundtruth:.2f}",
)
df_deepbedmap3.hist(
column="error",
bins=25,
ax=ax,
histtype="step",
label=f"DeepBedMap RMSE: {rmse_deepbedmap3:.2f}",
)
df_cubicbedmap.hist(
column="error",
bins=25,
ax=ax,
histtype="step",
label=f"CubicBedMap RMSE: {rmse_cubicbedmap:.2f}",
)
"""
df_synthetichr.hist(
column="error",
bins=bins,
ax=ax,
histtype="step",
label=f"SyntheticHR RMSE: {rmse_synthetichr:.2f}",
)
"""
ax.set_title("Elevation error between interpolated bed and groundtruth", fontsize=32)
ax.set_xlabel("Error in metres", fontsize=32)
ax.set_ylabel("Number of data points", fontsize=32)
ax.legend(loc="upper left", fontsize=32)
plt.tick_params(axis="both", labelsize=20)
plt.axvline(x=0)
# plt.savefig(fname="elevation_error_histogram.pdf", format="pdf", bbox_inches="tight")
plt.show()
# %%
print(f"Groundtruth RMSE: {rmse_groundtruth}")
print(f"DeepBedMap3 RMSE: {rmse_deepbedmap3}")
print(f"SyntheticHR RMSE: {rmse_synthetichr}")
print(f"CubicBedMap RMSE: {rmse_cubicbedmap}")
print(f"Difference : {rmse_deepbedmap3 - rmse_cubicbedmap}")
# %% [markdown]
# # 4. Antarctic-wide **DeepBedMap**
#
# Using our neural network to predict the bed elevation of the whole Antarctic continent!
# A previous version (April 2019) presented at EGU2019 can be found in this [issue](https://github.com/weiji14/deepbedmap/issues/133) with reproducible code in this [pull request](https://github.com/weiji14/deepbedmap/pull/136).
# %%
# Bounding Box region in EPSG:3031 covering Antarctica
window_bound_big = rasterio.coords.BoundingBox(
left=-2_700_000.0, bottom=-2_200_000.0, right=2_800_000.0, top=2_300_000.0
)
print(window_bound_big)
# %%
try:
X_tile = np.load(file="X_tile_big.npy")
W1_tile = np.load(file="W1_tile_big.npy")
W2_tile = np.load(file="W2_tile_big.npy")
W3_tile = np.load(file="W3_tile_big.npy")
except FileNotFoundError:
X_tile, W1_tile, W2_tile, W3_tile = get_deepbedmap_model_inputs(
window_bound=window_bound_big, use_whole_rema=True
)
np.save(file="X_tile_big.npy", arr=X_tile)
np.save(file="W1_tile_big.npy", arr=W1_tile)
np.save(file="W2_tile_big.npy", arr=W2_tile)
np.save(file="W3_tile_big.npy", arr=W3_tile)
# %%
# Oh we will definitely need a GPU for this
os.environ["CUDA_VISIBLE_DEVICES"] = "1"
model.to_gpu()
# %%
# clip Ice Surface Elevation, Velocity and Accummulation values to above 0.0
W1_tile = np.clip(a=W1_tile, a_min=0.0, a_max=None)
W2_tile = np.clip(a=W2_tile, a_min=0.0, a_max=None)
W3_tile = np.clip(a=W3_tile, a_min=0.0, a_max=None)
# %%
print(X_tile.shape, W1_tile.shape, W2_tile.shape, W3_tile.shape)
# %% [markdown]
# ## 4.1 The whole of Antarctica tiler and predictor!!
#
# Antarctica won't fit into our 16GB of GPU memory, so we have to:
#
# 1. Cut a 250kmx250km tile and load the data within this one small tile into GPU memory
# 2. Use our GPU-enabled model to make a prediction for this tile area
# 3. Repeat (1) and (2) for every tile we have covering Antarctica
# %%
@dataclasses.dataclass(frozen=True)
class Shape:
y: int # size in y-direction
x: int # size in x-direction
# %%
# The whole of Antarctica tile and predictor
with chainer.using_config(name="cudnn_deterministic", value=True):
# Size are in kilometres, same as BEDMAP2's 1km resolution
final_shape = Shape(y=18000, x=22000) # 4x that of BEDMAP2
ary_shape = Shape(y=1000, x=1000) # 1000pixels * 250m = 250km
stride = Shape(y=1000, x=1000) # cut a tile every 1000 metres
xtrapad = Shape(y=18, x=18) # extra padding at borders (which will be clipped off)
Y_hat = np.full(
shape=(1, final_shape.y, final_shape.x), fill_value=np.nan, dtype=np.float32
)
steps = []
for y_step in range(0, final_shape.y, stride.y):
for x_step in range(0, final_shape.x, stride.x):
steps.append(Shape(y=y_step, x=x_step))
for step in steps:
# plus `xtrapad.y` pixels and 1 pixel on bottom and top
y0 = max(0, (step.y // 4) - xtrapad.y - 1)
y1 = min(final_shape.y // 4, ((step.y + ary_shape.y) // 4) + xtrapad.y + 1)
# plus `xtrapad.x` pixels and 1 pixel on left and right
x0 = max(0, (step.x // 4) - xtrapad.x - 1)
x1 = min(final_shape.x // 4, ((step.x + ary_shape.x) // 4) + xtrapad.x + 1)
# print(str(x0).zfill(4), str(x1).zfill(4), str(y0).zfill(4), str(y1).zfill(4))
# Hardcoded crops of BEDMAP2 (X), REMA (W1), MEaSUREs (W2), Accumulation (W3)
X_tile_crop = model.xp.asarray(a=X_tile[:, :, y0:y1, x0:x1], dtype="float32")
W1_tile_crop = model.xp.asarray(
a=W1_tile[:, :, y0 * 10 : y1 * 10, x0 * 10 : x1 * 10], dtype="float32"
)
W2_tile_crop = model.xp.asarray(
a=W2_tile[:, :, y0 * 2 : y1 * 2, x0 * 2 : x1 * 2], dtype="float32"
)
W3_tile_crop = model.xp.asarray(a=W3_tile[:, :, y0:y1, x0:x1], dtype="float32")
# DeepBedMap terrain inference
with chainer.using_config(name="enable_backprop", value=False):
Y_pred = model.forward(
x=X_tile_crop, w1=W1_tile_crop, w2=W2_tile_crop, w3=W3_tile_crop
)
try:
y_slice = slice((y0 + xtrapad.y + 1) * 4, (y1 - xtrapad.y - 1) * 4)
x_slice = slice((x0 + xtrapad.x + 1) * 4, (x1 - xtrapad.x - 1) * 4)
Y_pred_uncut: np.ndarray = cupy.asnumpy(Y_pred.array)[0, :, :, :]
Y_hat[:, y_slice, x_slice] = Y_pred_uncut[
:, xtrapad.y * 4 : -xtrapad.y * 4, xtrapad.x * 4 : -xtrapad.x * 4
]
except ValueError:
raise
finally:
X_tile_crop = W1_tile_crop = W2_tile_crop = W3_tile_crop = None
# %% [markdown]
# ## 4.2 Save full map to file
# %%
# Save BEDMAP3 to GeoTiff and NetCDF format
# Using LZW compression and int16 instead of float32 to keep things smaller
_ = data_prep.save_array_to_grid(
window_bound=window_bound_big,
array=Y_hat.astype(dtype=np.int16),
outfilepath="model/deepbedmap_dem",
dtype=np.int16,
tiled=True,
compression=rasterio.enums.Compression.lzw.value, # Lempel-Ziv-Welch, lossless
)
# %% [markdown]
# ## 4.3 Show *the* DeepBedMap
# %%
# Adapted from https://docs.generic-mapping-tools.org/latest/gallery/ex42.html
fig = gmt.Figure()
gmt.makecpt(cmap="oleron", series=[-4500, 4500])
fig.grdimage(
grid="model/deepbedmap_dem.tif",
region=[-2700000, 2800000, -2200000, 2300000],
projection="x1:60000000",
frame="f", # add minor tick labels only
cmap=True,
Q=True,
)
fig.savefig(fname="deepbedmap_dem.png")
fig.show()